How modern water monitoring systems improve flooding and water risks

Source(s): GIM International

By Edward Pultar

[...]

All of these technological developments mean that more and more smart cities and regions can invest in better preparations for flooding. For example, the city of Newport News, Virginia, USA, invested in flood warning systems that monitor water levels in real-time due to storm surges, rising tides and rising water levels. Water monitoring systems use sensors to measure water levels and output alerts and early warnings when needed. Newport News selected devices that use radar pulses to measure water levels. The measurements are sent as 4-20mA signal readings to sensor adapters inside of the flood monitoring systems. Inside these systems are GSM sensor hubs that upload the sensor information via mobile cell networks. The information can be uploaded as often as needed, in this case to http://Tools.Valarm.net. Along with a flood and water monitoring system with additional IoT sensor, Virginia Beach uses ultrasonic depth sensors to measure water levels. These sensors send out noise pulses, and based on the reflected signal, water levels are known in near real-time.

[...]

Many areas in our world have precious water resources, and need to effectively monitor and manage groundwater volume as well as groundwater availability. It’s expensive to know what’s going on at remote water wells if staff need to collect the data manually. Water monitoring systems for wells have two key sensors that are monitored in real-time. Flow metres typically output a pulse every X number of gallons, measured by a sensor adapter. Water level sensors are pressure transducers that output 4-20 mA signals, which are translated into depths of water in the wells. Sensor hubs are the central brain units / CPUs that receive data from the sensor adapters and upload sensor measurements at regular time intervals. On a water well web dashboard (say that 10 times fast) you’ll see critical information about each of the monitored wells, by clicking on a name, map icon or location.

[...]

Even in remote areas, affordability of power supplies like solar panels present fewer difficulties in providing electricity to power monitoring systems. At the same time, ubiquitous availability of internet networks make it simpler for water monitoring systems to upload real-time measurements to the cloud. Not each scenario/monitoring system needs the same internet connectivity and electric power source. And power for Industrial IoT sensor monitoring systems will likely be a combination of various options, depending on factors like size, costs, maintenance, weather, availability, staff, and time. Internet connectivity and electric power source are two topics that are interrelated, especially in the case of Power over Ethernet (PoE). PoE means an easy 2-in-1 solution for ‘electrical juice’ and internet connectivity. While this is a viable option for many Industrial IoT device deployments, like stationary tank level and volume monitoring, sometimes it is more logical to go wireless or use renewable energy sources like solar panel power. With standard solar charge controllers and backup batteries like sealed lead acid, remote monitoring systems will be good to go and stay alive almost indefinitely.

[...]

Explore further

Hazards Flood
Share this

Please note: Content is displayed as last posted by a PreventionWeb community member or editor. The views expressed therein are not necessarily those of UNDRR, PreventionWeb, or its sponsors. See our terms of use

Is this page useful?

Yes No Report an issue on this page

Thank you. If you have 2 minutes, we would benefit from additional feedback (link opens in a new window).