Local and regional climate trends and variabilities in Ethiopia: Implications for climate change adaptations
This study analyzed trends and variabilities of climate (rainfall, maximum temperature (Tmax), and minimum temperature (Tmin)) at local and regional scales in Ethiopia. The local analysis was carried out considering each meteorological station, while the regional analyses were based on agro-ecological zones (AEZs). Ethiopia is experiencing considerable impact of climate change and variability in the last five decades. Analyzing climate trends and variability is essential to develop effective adaptation strategies, particularly for countries vulnerable to climate change.
The local level analysis revealed that Bega (dry season), Kiremt (main rainy season), and annual rainfall showed increasing trend, albeit no significant, in most stations, but the rainfall in Belg (small rainy) season showed a non-significant decreasing trend. The regional levels analysis also indicated an increasing trend of Bega, Kiremt, and annual rainfall in most AEZs, while Belg rainfall showed a decreasing trend in the greater number of AEZs. The result of both local and regional levels of analysis discerned a spatially and temporally more homogeneous warming trend. Both Tmax and Tmin revealed an increasing trend in annual and seasonal scales at most meteorological stations. Likewise, an increase was recorded for mean Tmax and Tmin in entire/most AEZs. The observed trends and variabilities of rainfall and temperature have several implications for climate change adaptations. In view of these findings, it is imperative to develop and implement effective climate-smart agricultural strategies specific to each agro-ecological zone (AEZ) to adapt to rainfall and temperature changes and variabilities.
Explore further
