Earthquake

Earthquake is a term used to describe both sudden slip on a fault, and the resulting ground shaking and radiated seismic energy caused by the slip, or by volcanic or magmatic activity, or other sudden stress changes in the Earth (USGS).

Until the arrival of COVID-19, earthquakes were the natural hazard that caused the most deaths per event. EM-DAT figures show that earthquakes claimed more than 720,000 lives between 2000 and 2019. Not included in this future are the over 50,000 deaths in the earthquake that struck Turkey and Syria in February 2023. More than 3 billion people live in regions prone to earthquakes

Most earthquakes are caused by the movement of the earth’s 15 tectonic plates. Geophysicists can identify places where earthquakes are sure to happen, but nobody can predict when an earthquake will happen, or its severity. Seismologists register more than 30,000 tremors every year, but most of these are of low magnitude.

While technology does not yet exist for reducing earthquake hazards, the risk to buildings and infrastructure and human population can be mitigated by seismic retrofitting of existing buildings, improved compliance with seismic safety building guidelines, and avoidance of building on cliff faces, soft soils or next to an active fault (HIP, 2021). Some success has also been achieved in the development of early warning systems, which detect earthquakes close to the source or fault rupture, and trigger warnings to more distant locations, providing seconds to minutes of advance warning (Gasparini et al., 2007).

Risk factors

Many factors aggravate earthquake risks, including:

  • Population density: eight out of the 10 most populated cities in the world are prone to earthquakes.
  • Most of the world’s earthquakes occur around the Pacific Rim, in areas where two-thirds of the world’s population lives.
  • Poorly built and non-engineered buildings.
  • Poverty: constrains more people to live in crowded, substandard housing and unsafe places.

The Scales

One of the ranking systems used to measure earthquake magnitudes is called the Richter Scale. Developed by Charles Richter in 1935, this scale is used to measure earthquake magnitude (ML). It indicates the energy released by an earthquake.

Because of some limitations of all the Richter magnitude scales and its extensions (ML, Mb, and Ms), a new more uniformly applicable extension of the magnitude scale, known as moment magnitude, or Mw, was developed. In particular, for very large earthquakes, moment magnitude gives the most reliable estimate of earthquake size. Moment is a physical quantity proportional to the slip on the fault multiplied by the area of the fault surface that slips; it is related to the total energy released in the earthquake.

Another ranking system, the Modified Mercalli Intensity Scale, measures seismic intensity. The magnitude of an earthquake is a measured value of the earthquake size. The intensity of an earthquake is a measure of the shaking created by the earthquake; this value varies with location.

Richter Scale Categories

Richter scaleEffect
< 3.5Generally not felt, but recorded
3.5 - 5.5Felt, but rarely causing any damage
< 6.0Slight damage to well-constructed buildings, heavy damage to poorly constructed buildings
6.1 - 6.9May damage inhabited areas up to 100 km wide
7.0 - 7.9Major earthquake that may cause serious damage in a very wide area
> 8.0>Serious earthquake that causes damage hundreds of kilometres away from the epicentre
> 9.0>Rare great earthquake, major damage in a large region of over 1,000 km

Source: USGS

Risk reduction measures

  • Integrating seismic risk into land-use planning and urban development strategies in earthquake-prone zones.
  • Ensure that building codes are enforced in critical high-use and high-occupancy infrastructure: hospitals, schools, housing, factories in earthquake zones.
  • Warning systems to cut off gas and electricity supplies to reduce fire risk.
  • Improving education and awareness through training and preparedness programmes in schools and workplaces on the importance of building safety.

Latest Earthquake additions in the Knowledge Base

Research briefs
New research by a University of Notre Dame expert finds that the assessment of this disaster can serve as a model for evaluating future disasters and making life-saving improvements.
Keough School of Global Affairs
Research briefs
Researchers dive into the mechanisms and stresses that trigger earthquakes along the passive margin and interior of the continent.
Eos - AGU
Cover
Documents and publications
This case study examines the dynamics of holding elections in the aftermath of disasters. It provides information on the legal and institutional background of elections in Türkiye and discusses the matters of organizing elections in the post-earthquake
Update
The U.S. Geological Survey and its partners are announcing a new capability to characterize large earthquakes quickly, helping inform the public about potentially damaging shaking headed their way.
United States Geological Survey
Update
The Swiss Seismological Service is now cataloguing suspected mass movement events recorded on its network.
Eos - AGU
Update
Although scientists cannot forecast when and where earthquakes will strike, preparation is key to improving society's resilience to large earthquakes.
University of Southern California
Cover
Documents and publications
In this study, the authors are analysing the effects that the earthquakes that hit the Dominican Republic (2003), Honduras (2007 and 2009) and Haiti (2010) had on gender relations, making comparisons between urban and rural areas.
Cover
Documents and publications
This study investigates the impact of four recent earthquakes, that occurred between 2020 and 2023, on reinforced concrete (RC) buildings.
Uploaded on

Is this page useful?

Yes No
Report an issue on this page

Thank you. If you have 2 minutes, we would benefit from additional feedback (link opens in a new window).