Impact Assessment of Water Environment in the Future due to Global Warming

T. KOJIRI and Y. SATO

Water Resources Research Center
Disaster Prevention Research Institute (DPRI)
Kyoto University

Information on Great East Japan Earthquake

Tsunami

Seismic Intensity

Damage on River Channel

Bridge

Crack

Dike break

Sinking

Countermeasures against Disasters

- Risk assessment
- Risk management for abnormal disasters
- Probabilistic prediction with evacuation system
- Interdisciplinary approaches among engineering, science and sociology
- Integrated revival plan under residents participation
- Necessity of global network such as JE-HydroNet

Hydrological Change in the Basin

In recent years...

Disappearance of permafrost layer

Glacial recessions

Applied River Basins in Japan

Calculation Procedures

Precipitation

1.08

CHIKUGO

0.98

1.05

ISHIKARI

MOGAMI

YODO

KISO

YOSHINO

1.07

TONE

1.14

1.24

Applied meshes

Estimation of meteorological change

Evapotranspiration and snowmelt (SVAT)

Runoff analysis (Hydro-BEAM)

Scenario : A1B Model : AGCM3.1S

Month: JAN

Re-productivity with AGCM20 for Air Temperature

Re-productivity for Runoff Discharge

Monthly average river runoff (m³/s)

Observed

— Calculated (INPUT: Observed)

- Effective re-productivity with hydrological model
- Underestimation of river runoff in the northern region
- Regional difference on runoff discharge

Influence of Bias

Monthly average river runoff (m³/s)

- Calculated (INPUT: Observed)
- Calculated (AGCM20-Present)

- Difference between red and green colored lines
- Bias correction of dynamic or statistic downscaling
- Improvement of GCM calculation

Hydrological Change with A1B Scenario

Impact of climate change in Northern Japan is larger than South-Western Japan. Ensemble average of CMIP3 models are well correspond with AGCM20.

River Runoff Change (A1B Scenario)

Monthly River discharge

Flow Duration Curve

Difference among Scenarios

Change of River Runoff though AGCM20

Relative change of T=1/100 Flood

Relative change of T=1/10 Drought

Figures created by Prof. TACHIKAWA

The warm colored areas implies that more severe flood and drought will occur in many places in Japan.

Conclusions

- The super-high resolution AGCM20 can detect the regional impact of climate change in Japan.
- The regional impact assessment must be analyzed because Northern part of Japan will get larger damage than South-western part of Japan.
- More severe floods and droughts will happen in the most of river basins.
- Risk management with sociology is needed for abnormal events for the future uncertainty.
- Optimal plan with extreme probability events must be considered considering alarm and evacuation systems.

