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Abstract Future changes in multidecadal mean water availability, represented as the difference between
precipitation and evapotranspiration, remain highly uncertain in ensemble simulations of climate models.
Here we identify a physically meaningful relationship between present‐day mean precipitation and
projected changes in water availability. This suggests that the uncertainty can be reduced by conditioning
the ensemble on observed precipitation, which is achieved through a novel probabilistic approach that uses
Approximate Bayesian Computation. Comparing the constrained with the full ensemble shows that
projected extreme changes in water availability, denoted by the 5th and 95th percentile of the full ensemble,
are less likely over 73% and 63% of land, respectively. There is also an overall shift toward wetter
conditions over Europe, Southern Africa, andWestern North America, whereas the opposite occurs over the
Amazon. Finally, the constrained projections support adaptation to shifts in regional water availability as
imposed by different global warming levels.

Plain Language Summary Human‐induced emissions of greenhouse gases are warming our
planet and if unabated would continue to do so. Projected climate change can affect rainfall,
evapotranspiration, and streamflow and hence water availability over land. Climate model projections of
future average water availability still vary substantially across different models. We find that part of this
disagreement can be explained by the amount of rainfall that each model simulates for the present. In a
drying region, for example, if a model has more water in the present, then the simulated loss is likely higher;
whereas if it is already dry in the present, then there is only a small amount of water that can be lost.
Therefore, we improve the projections by placing more confidence on the accuracy of those climate models
whose average rainfall from the past decades is more similar to observed rainfall amounts. We show that
previous projections of very extreme future changes in water availability are less likely to occur on 73%
of the land's surface. We also provide improved projections of regional changes that are useful for the
management of water resources, indicating more drying in the Amazon and less drying in Europe, Southern
Africa, and Western North America.

1. Introduction

As our planet warms, we continue to experience changes in the global water cycle (Collins et al., 2013).
Among these, changes in water availability over land are highly relevant for society and ecosystems alike.
Here we focus on multidecadal averages of water availability, represented by precipitation (P) minus evapo-
transpiration (ET), which is equivalent to multidecadal mean runoff and often considered as a measure of
renewable freshwater resources (e.g., Gudmundsson et al., 2017; Oki & Kanae, 2006). In a cautionary note,
we highlight that changes in multidecadal means may not represent changes in actual water available at
seasonal or shorter timescales (Kumar et al., 2013; Pendergrass & Knutti, 2018). At present, assessments
of future changes in mean water availability with global climate model simulations show large uncertainties
over most land regions (e.g., Greve et al., 2018; Greve & Seneviratne, 2015; Schewe et al., 2013), thus hinder-
ing efficient adaptation in water resources management.

Uncertainties of climate projections, forced by any given emission scenario of greenhouse gases, stem from
both internal climate variability and structural differences between models (e.g., Deser et al., 2012).
Although internal variability has been shown to influence trends in water availability for 20‐year periods
(Kumar et al., 2015), Greve et al. (2018) found that model uncertainty is dominating the spread of projected
changes in long‐term water availability. Moreover, Lorenz et al. (2018) highlight that model uncertainty is
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the best starting point to reduce the spread in climate projections.
Observations are commonly used to evaluate models and constrain
ensemble estimates of future hydroclimatic change, as comprehensively
reviewed by Flato et al. (2013). To constrain the projections in a meaning-
ful way, model performance needs to be evaluated against observations of
a present‐day quantity that can at least partially explain the differences in
the model projections.

Previous research has identified relations between simulated climate
characteristics and future projections of P and ET. For example,
Lemordant et al. (2018) found that differences in stomatal resistance
under future CO2 levels can have a strong impact on the projections.
However, stomatal resistance is an unsuitable variable for constraining
climate models since it cannot be compared with reliable present‐day
observations. Li et al. (2017) identified a dependency of changes in the
Indian Summer Monsoon rainfall on P in the tropical western Pacific.
He and Soden (2016) found that differences between simulations in their
present‐day climatology of sea surface temperatures can be relevant for
projected P changes, and that models with a similar P climatology tend
to project similar P changes. In our study we build upon this last finding
and exploit biases in present‐day water availability to constrain projected
changes in P – ET.

2. Influence of Present Conditions on Future Changes
in Water Availability

We hypothesize that there are regions where present‐day mean water
availability, as simulated by global climate models, is among the factors
influencing future changes in P – ET. To discuss reasons that support this
hypothesis, let us start by considering a drying region, that is, where simu-
lations from different models generally project a decrease in P – ET. Under
this condition, our expectation is that those simulations with lower P – ET
in the present period (hereafter referred to as drier reference state) are
more likely to project a smaller decrease in P – ET (Figure 1a). The under-
lying argument is that simulations with a drier reference state have less
drying potential because ET over land can normally not exceed P on mul-
tidecadal timescales (Greve et al., 2014; Kumar et al., 2015; Padrón et al.,
2017), and because ET rates are reduced when soil moisture conditions
are low (Koster & Suarez, 2001; Seneviratne et al., 2010). Let us now
consider wetting regions, that is, where simulations project an increase
in P – ET for the future. It is possible that the differences causing some

simulations to have higher P – ET than others in the present will remain in the future. This can lead to a
stronger increase in P – ET for simulations with a wetter reference state, for example, due to processes
related to the intensification of the hydrological cycle under global warming (e.g., Held & Soden, 2006).
Finally, we note that there are several examples of other bounded variables with an influence of the
present‐day state on future projections, such as Arctic ice extent (Liu et al., 2013; Massonnet et al., 2012),
runoff (Yang et al., 2017), and carbon storage (Mystakidis et al., 2016).

To test the above‐mentioned hypothesis, we consider P and ET data from climate model simulations of the
fifth phase of the Coupled Model Intercomparison Project (CMIP5). For the reference period 1976–2005, we
use data from historical simulations, whereas for the future period 2006–2100, we use data from simulations
with the “business as usual” RCP8.5 emissions scenario (Moss et al., 2010). A total of 36 different models (or
model configurations) with one initial condition simulation (i.e., the “r1i1p1”member) are considered. Data
from all models are bilinearly interpolated to a common 2.5° × 2.5° grid.

Projected changes in water availability for each member i of the considered model ensemble are given as

Figure 1. (a) Schematic representation of the hypothesized relation
between present day P – ET and its future change Δ(P − ET). (b) Pearson
correlation across models of (P − ET)ref with Δ(P − ET). (c) Pearson corre-
lations across models of Pref with Δ(P − ET). Here Δ(P − ET) is the differ-
ence between the means of periods 2071–2100 and 1976–2005.
P = precipitation; ET = evapotranspiration.
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Δ P−ETð Þi ¼ P−ETð Þfut;i− P−ETð Þref ;i mm yr−1
� �

; (1)

where (P − ET)ref is the mean for the period 1976–2005, and (P − ET)fut corresponds to the mean of any
30‐year period ending between 2006 and 2100. We first consider the future period 2071–2100 and
compute at each grid cell the Pearson correlation coefficient between Δ(P − ET) and (P − ET)ref across
all 36 ensemble members i (Figure 1b). In many regions, the correlations support the hypothesis that
projected changes in water availability depend on the present wetness state of the models. In Western
North America, Europe and Southern Africa correlations are clearly negative, highlighting that simula-
tions with higher P − ET in the present generally dry more by the end of the century. Conversely, in
the La Plata basin and Southern Asia, correlations are positive, suggesting that models with a wetter
reference state generally have a larger increase in future water availability. These results suggest that
the uncertainty in future P − ET changes can be reduced by favoring models with a better historical
performance for reproducing observations. Unfortunately, the observational uncertainty in present‐day
ET is particularly high compared to other climate variables (Mueller et al., 2013; Zeng et al., 2014).
Therefore, we decide to rely solely on long‐term mean P to represent the present‐day wetness state.
This decision is supported by the fact that the correlation across models of Δ(P − ET) with Pref
(Figure 1c) is very similar to that with (P − ET)ref (Figure 1b).

3. Obtaining a Constrained Model Ensemble for Water Availability Projections

The uncertainty in the projections of future hydroclimatic change can be constrained by attributing more
influence or a higher weight to model simulations that agree better with observed precipitation.
Therefore, we require observations of present‐day long‐term mean P to evaluate the models. To account
for some of the observational uncertainty, we consider mean P from two global gridded products: CRU TS
v.4.01 (Harris et al., 2014) from the period 1976–2005 and MSWEP (Beck et al., 2017) from the period
1979–2005. These products are relatively independent; whereas CRU TS consists of interpolated gauge data,
MSWEP combines gauge, satellite, and reanalysis data.

To evaluate the agreement between observations and models, we use the Continuous Ranked
Probability Score (CRPS), which is designed to evaluate ensemble simulations (e.g., Jollife &
Stephenson, 2012). The CRPS computes the integrated square difference between the cumulative distri-
butions from the multimodel ensemble and the observations. Precipitation data are log‐transformed
when computing the CRPS to avoid excessive influence of grid cells with high P. Also, weights are
assigned to each grid cell proportional to their area and the absolute magnitude of the correlation
between Pref and Δ(P − ET). The latter ensures that the focus is on regions where the potential to
constrain projected changes is the greatest. Finally, Greenland and desert regions defined by Kottek
et al. (2006) are not considered when evaluating model performance, as observational P estimates are
generally not reliable in these regions.

To determine the weights corresponding to each of the considered models for constraining the ensemble, we
follow an approach related to Bayesian model averaging (e.g., Raftery et al., 2005; Yang et al., 2017).
However, here we avoid assumptions on the distribution of model estimates and observations and instead
useMarkov ChainMonte Carlo (MCMC) to generate samples from a posterior distribution without knowing
the likelihood function (Marjoram et al., 2003).

A general description of our methodology is presented here, whereas detailed information is provided in
Supporting Information S1. In our case, the weight of each model i represents the probability αi of being
included in the constrained ensemble. Whereas the original full ensemble corresponds to the case with
αi = 1 for all models, our goal is to determine the values of αi that minimize the CRPS (i.e., maximize the
agreement between model simulations and observations). An initial set of αi values is selected at random,
and then the optimization of αi is achieved by iterating through the following steps:

1. Propose a new set of αi values as a function of their values from the previous iteration.
2. Create a model ensemble of 100 members by sampling with these probabilities αi.
3. Compute the agreement of the ensemble with the observations through the CRPS.
4. If the CRPS of the current iteration is smaller than the CRPS of the previous iteration, store the proposed

set of αi; otherwise, keep the previous set and start a new iteration.
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The optimization of αi is complete when it is no longer possible to reduce the resulting CRPS. In practice, we
use 40,000 iterations because there is almost no improvement of the CRPS after a shorter initial phase.
Additionally, to capture the possible distributions of the optimized αi probabilities, we repeat the process
100 times starting from different initial sets of αi chosen at random (Figure 2). The final CRPS values for
all of these cases are very similar. Finally, the constrained ensemble is composed by sampling 100 times with
the mean of the optimized αi probabilities.

After optimizing αi, it becomes evident that some models are almost always included in the constrained
ensemble, that is, αi ≈ 1 (e.g., CMCC‐CM and CanESM2); whereas others are instantly excluded, αi ≈ 0
(e.g., BNU‐ESM and FIO‐ESM). There are also cases where the similarities and dependencies across models
allow to interchange one of them for the other with minor effect on the CRPS (e.g., HadGEM2‐CC with
HadGEM2‐ES and MRI‐CGCM3 with MRI‐ESM 1); this is why the variability of their optimized αi is higher.
For CESM1‐CAM5 and CNRM‐CM5, the high variability of αi suggests that their inclusion in the
constrained ensemble has a small effect on the agreement with observed P.

4. Constrained Projections of Future Changes in Water Availability

A global summary of water availability projections from the constrained ensemble for the end of the century
is shown in Figure 3. Although the mean changes in P – ET are not strikingly different than what we know
from the full ensemble, there are interesting differences regarding the ensemble spread. For the constrained
ensemble, 44.4% of the grid cells have an absolute signal to noise ratio > 1, indicating confidence in the sign
ofΔ(P− ET). This corresponds to an increase of 8.1% relative to the full ensemble, which is mainly attributed
to a higher model agreement on a wetting of western Russia and northeast China. Furthermore, the differ-
ences in the signal‐to‐noise ratio indicate that the full model ensemble is overall drier than the constrained
ensemble for latitudes between 30° and 60° North.

Figure 2. Distribution of the optimized probability (αi) of each model to be included in the constrained ensemble. The
plotted data are obtained by optimizing αi after starting from 100 different initial sets. Blue dots represent the
minimum and maximum values; lines reach the 5th and 95th percentiles; and boxes cover the interquartile range. Red
dots represent the mean probabilities that are used to sample the constrained ensemble.
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From a climate‐impact perspective, insights on possible extreme changes are highly relevant. For this
purpose, we focus on the 5th and 95th percentiles of the ensemble at each grid cell. The extreme projected
drying, represented by the 5th percentile, is less intense for the constrained ensemble throughout most
regions of the globe when compared to the full ensemble—this is the case in 84% of land grid cells within
the latitudinal band 30–50°N. Furthermore, the reduction in the drying magnitude can be greater than
100 mm yr−1 in hot spots like Western North America and south of the Sahara. A strong reduction in the
magnitude of projected extreme wetting is also found, for example, in Western Africa, Northern South
America, and Northern Australia.

Summaries of changes in regional water availability provide a more detailed view of the increased confi-
dence obtained with the constrained ensemble. Figure 4 presents the results for selected regions from
Seneviratne et al. (2012) that show a strong reduction in the ensemble spread for different global warming
levels (see Figure S1 for all other regions). This analysis considers periods for which all models exhibit the
same increase in global mean temperature (ΔTg) with respect to preindustrial conditions (here 1870–
1899), as opposed to using fixed time windows. To put the reported values of Δ(P − ET) in each region into
context, the figure also includes mean present‐day water availability from the constrained ensemble. The
results indicate that the constrained distributions are predominantly shifted toward wetter conditions
relative to the full ensemble, although the opposite is true for the Amazon. Other relevant features of the
constrained ensemble are the less severe drying for the 5th percentile in economically important regions like
Western North America, Central Europe, and Southern Africa; as well as the reduced wetting for the 95th
percentile in Western Africa and Southern Asia.

Figure 3. Comparison of Δ(P − ET) projections between the full and the constrained ensembles. Here Δ(P − ET) corresponds to changes between the means of
periods 1976–2005 and 2071–2100 and is expressed in millimeters per year. The four rows correspond to the mean (μ), the mean‐to‐standard deviation ratio or
signal‐to‐noise ratio (μ/σ), the 5th percentile (PCTL) of the ensemble, and the 95th percentile of the ensemble. P = precipitation; ET = evapotranspiration.
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A key aspect of the constrained ensemble is the reduced likelihood of extreme changes in water availability
relative to the full ensemble. To quantify this reduction, we start by defining pf as the probability of exceed-
ing an extreme threshold in Δ(P − ET) within the full ensemble, and pc as the probability of exceeding the
same threshold within the constrained ensemble. The probability ratio PR = pc / pf can then be used to
quantify the change in the likelihood of exceeding the selected threshold—for example, PR = 1 indicates
no change, PR = 1/2 indicates that it is two times less likely to exceed the threshold in the constrained
ensemble, and PR = 2 that it is two times more likely. Here we compute PR by selecting the 5th and 95th
percentile of Δ(P − ET) from the full ensemble as the respective thresholds to represent extreme drying

Figure 4. Differences between the distributions of regionally averaged Δ(P − ET) from the full model ensemble (red) and
the constrained ensemble (blue) for increasing global mean temperature with respect to the preindustrial period (1870–
1899). Dots represent the 1st, 50th, and 99th percentiles; lines reach the 5th and 95th percentiles; and boxes cover the
interquartile range. The spatial domain of each region is shown on the top left. Regional mean present‐day water avail-
ability from the constrained ensemble is indicated as (P − ET)ref. P = precipitation; ET = evapotranspiration.
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and wetting. For both cases, pf = 0.05, while pc is obtained at each grid cell from the magnitude of the
corresponding thresholds.

Global maps of PR highlight the strong reduction of the likelihood of extreme Δ(P − ET) for the constrained
ensemble, with values below 1/5 in several regions (Figure 5). Note, however, that there is an increased
likelihood of extreme drying in parts of the Amazon, as well as of extreme wetting in Eastern Africa and
Western Russia. To complement these results, we compute the global cumulative distribution of the
differences between the 5th percentiles of the constrained and full ensemble and also between the 95th
percentiles. Results for the 5th percentile indicate that extreme drying is reduced in approximately 73%
of land grid cells, with low dependence on global warming levels. Furthermore, in 25% of all land grid cells,
the reduction for a 3 K global warming is greater than 18% of mean present‐day P – ET. Finally, extreme
wetting is also substantially reduced in the constrained ensemble, although to a slightly smaller degree than
extreme drying.

5. Conclusions

This study describes how present‐day mean precipitation in climate models influences projections of future
changes in multidecadal mean P minus ET. We identify regions such as Western North America, Central
Europe, the Mediterranean, and Southern Africa, where a wetter reference state in the models is negatively
correlated to the projected change in P – ET. This suggests that model simulations with high present‐day
water availability often dry more under global warming in these regions; whereas if water availability is
already low, it is less likely to decrease and might even increase. On the other hand, the intensification of
the hydrologic cycle with global warmingmay explain why simulations with wetter conditions in the present
tend to project a larger increase in P – ET in regions with high P, such as Southern Asia and La Plata basin in
South America. Based on the relevance of the reference state, we argue that simulations that agree better
with observations are likely more reliable for future projections.

Figure 5. (top) Probability ratio PR for extreme projections of Δ(P − ET) corresponding to the 5th (a) and 95th (b) percen-
tile (PCTL) of the full ensemble. The constrained ensemble reduces the likelihood of extreme changes when PR < 1.
(bottom) Cumulative land fraction as function of the difference between the 5th (c) and 95th (d) percentiles of the
projections from the constrained ensemble (Δ(P− ET)c) and the full ensemble (Δ(P− ET)f). Differences are shown relative
to mean present‐day P – ET from the constrained ensemble. Positive values in the X axis of (c) indicate less extreme
drying in the constrained ensemble. Negative values in the X axis of (d) indicate less extreme wetting in the constrained
ensemble. Each line in the plots corresponds to a differentmean global warming level with respect to the preindustrial period
(1870–1899). Greenland and desert regions are excluded from this analysis. P = precipitation; ET = evapotranspiration.
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To evaluate and to constrain the considered model ensemble, a novel approach that is based on quantify-
ing the probability of each model to be included in a constrained ensemble is introduced. The distribu-
tions of these probabilities help to identify models with evident agreement with observations and
models with evident disagreement, as well as the ability of the method to account for very similar models.
Furthermore, the presented algorithm is applicable to cases involving different constraining metrics, and
it can incorporate both multiple ensemble simulations per model and multiple observational products.
Finally, it is important to recall that while our study focuses on reducing uncertainty stemming from
differences between climate models, emission scenarios and internal variability might also influence
the spread of the projections.

The resulting constrained estimates of projected changes in long‐term mean P – ET generally show a
narrower distribution compared to the full model ensemble, together with a shift in the distribution
toward wetter conditions in several regions around the world. However, there is an increased likelihood
for drying in the Amazon. We highlight that the constrained ensemble suggests a reduced likelihood of
extreme drying over most of the land surface. This is especially noteworthy and relevant for Europe,
Southern Africa, and Western North America. Nonetheless, this reduction in drying does not necessarily
imply that strong drying is not possible; for example, 5% (25%) of the constrained ensemble members still
project a decrease in water availability relative to the present‐day ensemble mean of up to 53.3% (23.6%)
in the Mediterranean and 19.4% (8.2%) in Southern Africa, under a 3 K global warming. The reduced
uncertainty in multidecadal mean water availability projections obtained in this study is highly relevant
for climate adaptation and decision making.
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