Evaluación de la Vulnerabilidad Futura del Sistema Hídrico al Cambio Climático

Jaime Echeverría Bonilla, MSc

INFORME FINAL
Mejoramiento de las Capacidades Nacionales para la Evaluación de la Vulnerabilidad y Adaptación del Sistema Hídrico al Cambio Climático en Costa Rica, como mecanismo para disminuir el riesgo al Cambio Climático y aumentar el Índice de Desarrollo Humano

Evaluación de la Vulnerabilidad Futura del Sistema Hídrico al Cambio Climático

Autor: MSc. Jaime Echeverría Bonilla

San José, Costa Rica
Octubre de 2011
Agradecimientos

La “Evaluación de la Vulnerabilidad Futura del Sistema Hídrico al Cambio Climático en Costa Rica” ha sido posible gracias al valioso aporte de expertos nacionales en diferentes áreas.

Por tanto quisiéramos agradecer la colaboración de la Dra. María Ethel Trejos del Ministerio de Salud, el apoyo del Señor Carlos Manuel Rodríguez, Señor Fernando Bermúdez y Señor Vicente Watson en los temas relacionados con Áreas Protegidas, al Señor Darner Mora (Acueductos y Alcantarillados) y al Señor José Miguel Zeledón (Dirección de Aguas, MINAET) por su colaboración en aspectos sobre tratamiento de aguas residuales y a la Licenciada Martha Gross (Instituto de Investigación en Educación de la Universidad de Costa Rica).

Finalmente se desea hacer un agradecimiento especial a Roberto Villalobos, Ana Rita Chacón, Magda Campos, y José Retana del Instituto Meteorológico Nacional por su apoyo y constante contribución durante el desarrollo del proyecto.
# Tabla de Contenido

1 Resumen Ejecutivo ........................................................................................................... 7  
1.1 Cambio Climático, Recursos Hídricos y Desarrollo Humano ....................................... 7  
1.2 Análisis de la Vulnerabilidad Futura ........................................................................ 9  
1.3 Resultados ..................................................................................................................... 10  
1.4 Conclusiones ............................................................................................................... 12  

2 Introducción .................................................................................................................. 15  

3 Marco Conceptual ...................................................................................................... 17  
3.1 Cambio Climático, Recursos Hídricos y Desarrollo Humano .................................. 18  
3.2 Vulnerabilidad ........................................................................................................... 20  
3.3 Género, Cambio Climático y Recurso Hídrico .......................................................... 23  
3.4 Vulnerabilidad Futura y Uso de Indicadores .............................................................. 24  

4 Metodología ................................................................................................................. 26  
4.1 Selección de Indicadores ............................................................................................ 28  
4.2 Motores de Cambio .................................................................................................... 34  
4.3 Escenarios .................................................................................................................. 36  
4.4 Cálculo de Valores ..................................................................................................... 38  
4.5 Análisis de Resultados .............................................................................................. 42  

5 Análisis de Indicadores .............................................................................................. 43  
5.1 Caracterización de Indicadores seleccionados ......................................................... 43  
5.2 Relación de los indicadores seleccionados con el sector hídrico y el cambio climático ........................................................................................................... 50  

6 Proyección de Indicadores ......................................................................................... 53  
6.1 Índice de Desarrollo Humano .................................................................................... 53  
6.2 Índice de Potenciación de Género ............................................................................. 55  
6.3 Porcentaje de Viviendas con Tanque séptico ............................................................. 56  
6.4 Área sin zona protegida ............................................................................................. 58  
6.5 Densidad poblacional ................................................................................................. 60  
6.6 Potencial Hídrico per Cápita ................................................................................... 62  
6.7 Población Discapacitada ............................................................................................ 64  
6.8 Índice de Vulnerabilidad ......................................................................................... 65  

7 Análisis de Resultados ............................................................................................... 67  
7.1 Distribución Geográfica de la Vulnerabilidad ............................................................ 69  
7.2 Comparación de Escenarios ...................................................................................... 72  
7.3 Componentes ............................................................................................................. 75  
7.4 Método de análisis y limitantes ............................................................................... 76  

8 Conclusiones y Recomendaciones ............................................................................ 79  

9 Referencias Bibliográficas .......................................................................................... 82
10 Anexos ........................................................................................................ 86
10.1 Anexo 1. Índice de Vulnerabilidad Futura para tres escenarios ............. 86
10.2 Anexo 2. Regresiones Lineales y coeficientes estimados ..................... 87
10.3 Anexo 3. Proyecciones de los Indicadores por cantón para el año 2030 escenario AD ................................................................. 88

Lista de Cuadros

Cuadro 1. Costa Rica: relevancia del agua para sectores productivos ............. 19
Cuadro 2. Lista de Indicadores utilizada por Retana et al, 2011 ..................... 28
Cuadro 3. Correlación entre indicadores ........................................................ 29
Cuadro 4. Indicadores seleccionados para el cálculo de la Vulnerabilidad Futura ... ......................................................................................... 33
Cuadro 5. Motores de Cambio por Indicador ............................................... 35
Cuadro 6. Descripción de Escenarios ............................................................. 37
Cuadro 7. Cálculo de los Indicadores según escenario .................................. 39
Cuadro 8. Área silvestre protegida (km2) por provincia ................................. 48
Cuadro 9. Indicadores seleccionados y su relación con el recurso hídrico, el desarrollo humano y el cambio climático .............................................. 50
Cuadro 10. Componentes del Índice de Vulnerabilidad por Provincia .......... 76
Cuadro 11. Coeficientes de regresión estimados para cantones seleccionados. ......................................................................................... 87

Lista de Figuras

Figura 1. Proyección del IDH al año 2030 para tres escenarios (promedio cantonal) ......................................................................................... 10
Figura 2. Mapa de Vulnerabilidad Futura, año 2030, escenario AD ................ 11
Figura 3. Mapa Vulnerabilidad Actual (Retana et al 2011) ............................. 22
Figura 4. Esquema de Análisis de la Vulnerabilidad Futura ......................... 27
Figura 5. Índice de Desarrollo Humano y sus Componentes ....................... 30
Figura 6. Comparación entre índice de desarrollo humano y índice de vulnerabilidad actual. .................................................................31

Figura 7. Ejemplo de Estimación de Tendencia en el Índice de Desarrollo Humano para el Cantón de San José.........................................................42

Figura 8. IDH: promedio cantonal desde 1993 hasta 2008.........................44


Figura 10. Comportamiento histórico de la población en Costa Rica, desde 1950 hasta el 2010 .................................................................46

Figura 11. Proyección del IDH al año 2030 para tres escenarios...............54

Figura 12. Proyección del IPG. .................................................................56

Figura 13. Proyecciones de porcentajes de tanques sépticos....................58

Figura 14. Proyecciones de los Porcentajes de Áreas con Zona Protegida ......60

Figura 15. Proyecciones de Densidad Poblacional..................................61

Figura 16. Proyecciones de Potencial Hídrico per cápita..........................62

Figura 17. Proyecciones de Porcentaje de Población Discapacitada ..........65

Figura 18. Índice de Vulnerabilidad Futura por año y escenario...............66

Figura 19. Mapa de Vulnerabilidad Futura, año 2030, escenario AD............71

Figura 20. Vulnerabilidad en el Año 2030, Escenario Retroceso...............73

Figura 21. Vulnerabilidad en el Año 2030, Escenario Normal...............74

Figura 22. Índice de Vulnerabilidad Promedio por Provincia para el 2030....75
1 Resumen Ejecutivo

En el marco del Proyecto “Mejoramiento de las capacidades nacionales para la evaluación de la vulnerabilidad y adaptación del sistema hídrico al cambio climático en Costa Rica, como mecanismo para disminuir el riesgo al cambio climático y aumentar el Índice de Desarrollo Humano”, el Instituto Meteorológico Nacional con la ayuda financiera de PNUD Costa Rica contrató un novedoso estudio para evaluar la Vulnerabilidad Futura del sector de recursos hídricos ante el cambio climático con un horizonte hasta el año 2030.

El cambio climático afectará de manera distinta a cada país y sector de la población. Algunos países, o grupos, están mejor capacitados que otros para adaptarse y hacer frente a los impactos esperados (especialmente cambios en la temperatura y la precipitación), así mismo habrá sectores de la economía y de la población mejor preparados que otros para lidiar con estos cambios.

Costa Rica no es la excepción y hay sectores especialmente vulnerables a estos cambios. Uno de estos es el sector de recursos hídricos, que está relacionado con el consumo de agua para consumo doméstico y el saneamiento, la generación de electricidad y la agricultura. Asimismo, en la población hay sectores que son particularmente vulnerables, incluyendo las personas dependientes, las mujeres pobres, y quienes dependen de la agricultura como principal medio de vida.

La vulnerabilidad es considerada un componente del riesgo, que es también una función de la amenaza: \( R = f(\text{amenaza}, \text{vulnerabilidad}) \). En este caso la amenaza se refiere al cambio climático y sus efectos, incluyendo sequías, inundaciones y cambios en la temperatura, mientras que la vulnerabilidad se asocia con la habilidad que tiene la sociedad de enfrentarlos. A pesar de que no existe una definición universal para vulnerabilidad el Panel Intergubernamental sobre Cambio Climático (IPCC, 2007) la define como “… el grado al cual un sistema es susceptible a, o incapaz de, enfrentarse a efectos adversos del cambio climático incluyendo variabilidad climática y eventos extremos”.

El concepto de vulnerabilidad implica que ante amenazas similares, poblaciones o sectores diferentes van a tener impactos distintos. Por ejemplo, mientras que pequeños productores agrícolas tienen poca movilidad ante una eventual reducción en la precipitación, grandes empresas pueden moverse con facilidad hacia nuevos territorios e incluso diferentes países. La vulnerabilidad está muy ligada al desarrollo humano debido a que aquellas poblaciones con mejores ingresos, educación y salud tendrán mayor capacidad de adaptación.

1.1 Cambio Climático, Recursos Hídricos y Desarrollo Humano

Uno de los principales impactos esperados del cambio climático es modificaciones importantes en el régimen de lluvias, incluyendo su cantidad y
distribución en el tiempo. Esto tendrá claramente un impacto sobre el desarrollo humano\textsuperscript{1} ya que la relación de este con los recursos hídricos es fuerte. El acceso al agua es una condición necesaria, aunque no suficiente, para el desarrollo humano (PNUD, 2006 y PNUD, 2007). Y casualmente son aquellas poblaciones en condiciones de mayor pobreza las que tienen menos acceso a este recurso.

El sector de recursos hídricos es de particular importancia cuando se analiza el cambio climático debido a que las consecuencias esperadas de este fenómeno incluyen aumentos y disminuciones en la precipitación, así como cambios en su patrón estacional. Además, el agua es un vínculo entre el sistema natural y el sistema social. Por eso toman gran importancia en la discusión sobre vulnerabilidad. En Costa Rica, el café es un ejemplo claro de un cultivo muy importante para la economía y que requiere patrones de lluvia muy marcados para tener una buena productividad. La producción de electricidad también es dependiente del agua y su distribución en el tiempo.

Los recursos hídricos pueden verse afectados de muchas formas por el cambio climático, incluyendo, de acuerdo al IPCC (2008) las siguientes:


- Mayor frecuencia de inundaciones y sequías. Esto afectará la calidad del agua y exacerbará muchas formas de contaminación del agua (sedimentos, nutrientes, carbono orgánico disuelto).

- Cambios en la cantidad y la calidad del agua debidos al cambio climático afectarán la disponibilidad, estabilidad, acceso y utilización de la comida. Esto aumentará la vulnerabilidad de las familias más pobres, y reducirá la seguridad alimentaria.

- El cambio climático afectará la operación de la infraestructura existente para el aprovechamiento de los recursos hídricos (represas para la generación hidroeléctrica, sistemas de riego y drenaje). Plantea un reto al supuesto tradicional de que la hidrología pasada brinda una buena guía para condiciones futuras.

Para asegurar el acceso al recurso hídrico en el futuro para todos los sectores es necesario entonces mejorar las capacidades de la población y especialmente de los grupos vulnerables, ya que no todos están igualmente preparados para adaptarse al cambio climático. Uno de estos grupos son las mujeres, ya que por

\textsuperscript{1} Desarrollo humano es el proceso de expansión de libertades efectivamente disfrutadas por las personas.
diversas razones están más expuestas a los impactos del cambio climático sobre los recursos hídricos. La mayoría de los autores concuerdan en que usualmente las mujeres ejercen un papel central en el acceso, manejo y distribución del recurso hídrico. El agua está estrechamente vinculada con el trabajo cotidiano en el interior de los hogares, trabajo que históricamente ha recaído sobre la mujer. Es vital para preparar alimentos, lavar la ropa, asear la vivienda, la higiene familiar y la producción de alimentos. Esto las hace más vulnerables a cambios en el abastecimiento y disposición de agua. Por otra parte, en las zonas rurales de Costa Rica el 75% de los hogares con jefatura femenina son pobres (INEC, 2002). Estos hogares al enfrentar situaciones adversas extremas (incluyendo desastres naturales), tienen menor capacidad de respuesta.

1.2 Análisis de la Vulnerabilidad Futura

Lo que determina la vulnerabilidad del sector recursos hídricos de un país, o región ante el cambio climático es un tema novedoso. Por lo tanto hay diferentes “visiones” acerca de los factores que determinan la vulnerabilidad. No obstante, hay consenso en que la pobreza, la dependencia del sector primario y la disponibilidad de agua son algunos de los principales. En Costa Rica, el IMN calculó la vulnerabilidad actual con base en una serie de indicadores con el fin de identificar los cantones más vulnerables y acciones preventivas. En dicho trabajo Retana et al (2011) utilizaron 14 indicadores.

En este caso se realiza el cálculo de la vulnerabilidad futura con algunos de los mismos indicadores y algunos adicionales: Índice de Desarrollo Humano (IDH), Índice de Potenciación de Género (IPG), porcentaje de viviendas con tanque séptico (VTS), áreas sin zona protegida (ASP), potencial hídrico per cápita (PHC), población de discapacitados (PD) y densidad poblacional (DP). Además se utilizó un enfoque de escenarios. Paralelamente se desarrollan tres escenarios, llamados en este caso “alto desarrollo humano”, “normal” y “retroceso”2, para los cuales se especifican una serie de supuestos y criterios que permiten su cálculo. Las proyecciones se hicieron para los tres escenarios y para los años 2010, 2015, 2020, 2025 y 2030. Todos los cálculos se realizaron para los 81 cantones del país.

Para proyectar al futuro cada uno de los indicadores se utilizaron diversas técnicas incluyendo regresión lineal, criterio de experto y uso de coeficientes de contaminación del agua.

2 Normal: Consiste en una continuidad de las tendencias presentada por los indicadores en los últimos años disponibles.
Alto Desarrollo: Consiste en un futuro en donde el país avanza en el desarrollo humano en todos sus cantones.
Retrocedo: El país no es capaz de adaptarse a los cambios requeridos y la situación política interna del país hace que los logros obtenidos en el pasado se vayan perdiendo.
1.3 Resultados

El análisis realizado parte de una proyección hacia futuro de cada uno de los indicadores seleccionados y que componen el “Índice integrado de vulnerabilidad futura”. La figura siguiente muestra, a manera de ejemplo la proyección realizada para el caso del Índice de Desarrollo Humano.

Figura 1. Proyección del IDH al año 2030 para tres escenarios (promedio cantonal).

<table>
<thead>
<tr>
<th>Año</th>
<th>R</th>
<th>N</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.7200</td>
<td>0.7400</td>
<td>0.7800</td>
</tr>
<tr>
<td>2015</td>
<td>0.7600</td>
<td>0.7800</td>
<td>0.8000</td>
</tr>
<tr>
<td>2020</td>
<td>0.8000</td>
<td>0.8200</td>
<td>0.8400</td>
</tr>
<tr>
<td>2025</td>
<td>0.8400</td>
<td>0.8600</td>
<td>0.8800</td>
</tr>
<tr>
<td>2030</td>
<td>0.8800</td>
<td>0.8800</td>
<td>0.8800</td>
</tr>
</tbody>
</table>

Nota: R: escenario de retroceso; N: normal o tendencial; AD: alto desarrollo humano

Combinando los resultados obtenidos para cada indicador de forma individual en un índice integrado, y dándole la misma importancia a cada uno de ellos, se obtienen los resultados que se observan en el mapa (Figura 3). Esto para el escenario de Alto Desarrollo Humano, que es el sugerido por el autor. En el mapa se destacan algunos patrones de vulnerabilidad.

Para el análisis de la información se toma como referencia las regiones climáticas de Costa Rica definidas por el IMN, a saber; Valle Central, Pacífico Norte, Pacífico Central, Pacífico Sur, Zona Norte y Vertiente del Caribe. Los resultados se reflejan por medio de colores que indican diferentes grados de vulnerabilidad (rojo oscuro simboliza los cantones más vulnerables, rojo para los cantones con vulnerabilidad media-alta, anaranjado representa los cantones con vulnerabilidad media, el amarillo oscuro aquellos con una vulnerabilidad media-baja y finalmente el color amarillo claro para aquellos cantones menos vulnerables).

En primer lugar destaca el Valle Central, en donde aspectos como una limitada disponibilidad hídrica, alta densidad de población y la ausencia de áreas protegidas hacen que los cantones sean vulnerables a los impactos del cambio climático. Alajuelita, San José y Desamparados tienen una vulnerabilidad alta,
pese a contar con buenos ingresos, salud y educación. Lo mismo ocurre con los cantones de Belén y Flores. En la categoría de medio alto se encuentran Aserrí y Tibás. En este sentido es importante enfatizar la importancia que juega la contaminación del agua en la disponibilidad hídrica ya que reduce la oferta de agua disponible para los diferentes usos, que hacia el futuro se espera que aumente en todos los cantones, pero principalmente en el Valle Central.

Hay cantones que ilustran la tendencia futura esperada para el Valle Central hacia el 2030. Por ejemplo, Escazú y Curridabat son cantones que desde el punto de vista del desarrollo humano se ubican entre los primeros lugares. No obstante, tienen prácticamente una ausencia total de áreas protegidas, un uso generalizado de tanques sépticos y una muy baja disponibilidad hídrica por persona, lo cual los ubica en una categoría media de vulnerabilidad. A esto habría que sumarle una tendencia al aumento en la densidad de población y la contaminación de las fuentes de agua de estos cantones lo que agravará la situación.

Figura 2. Mapa de Vulnerabilidad Futura, año 2030, escenario AD.

Los cantones de la Zona Norte, aunque tienen bajos ingresos, su baja densidad de población y gran cantidad de agua disponible por persona hacen que tengan...
una vulnerabilidad baja o media. Esto incluye algunos cantones fronterizos y alejados de la Capital que no necesariamente serán tan vulnerables en el futuro, de acuerdo a la visión planteada en este estudio. Esto contrasta con el estudio de vulnerabilidad actual (Retana et al, 2011) que clasifica a estos cantones en la Zona Norte como de alta vulnerabilidad, principalmente debido a un bajo nivel de desarrollo humano.

Sin embargo, estos cantones tienen economías rurales diversificadas y flexibles, que históricamente se han adaptado a condiciones adversas. Este es el caso de Upala, La Cruz, Los Chiles y San Carlos que aunque tienen un bajo IDH e IPG, debido a carencias en ingresos, educación, salud y pocos avances en el tema de género, ven su vulnerabilidad reducida en el futuro debido a un gran potencial hídrico por persona, baja densidad de población y la existencia de áreas protegidas. Lo mismo ocurre con cantones como Osa y Golfito del Pacífico Sur, que si bien es cierto tienen bajos niveles de IDH e IPG, tienen características similares a los anteriores que los hacen menos vulnerables en el futuro.

En la Vertiente del Caribe la mayoría de los cantones costeros tienen vulnerabilidad alta o media alta. Esto resulta en una baja capacidad de respuesta ante los impactos del cambio climático sobre los recursos hídricos, medida por el índice integrado. La excepción la constituyen los cantones de Siquirres y Talamanca. En el caso de Siquirres la diferencia con respecto a Limón, Matina, Guácimo y Pococi, que tienen una vulnerabilidad alta, se atribuye a la gran diferencia favorable que tiene en cuanto al IDH y el IPG. En el caso de Talamanca la diferencia se debe a su baja densidad de población, el potencial hídrico por persona es amplio, así como un alto porcentaje de áreas protegidas y una proporción baja de personas discapacitadas. A pesar de que de acuerdo con las proyecciones realizadas Talamanca será el cantón con el menor IDH en el año 2030, los otros indicadores compensan este efecto y lo hacen menos vulnerable que otros cantones de esa región.

En el Pacífico Norte, la vulnerabilidad es alta, en los cantones de la Cuenca del Río Tempisque en Guanacaste incluyen Santa Cruz, Nicoya y Carrillo. Esto se debe a un bajo IDH, poca disponibilidad hídrica además y un porcentaje alto de población discapacitada. Algo similar ocurre en Hojancha y Nandayure. En el Pacífico Central la vulnerabilidad es en general media, con la excepción del cantón de Parrita, que tiene un alto porcentaje en el uso de tanque séptico, una baja disponibilidad hídrica y pocas áreas protegidas.

1.4 Conclusiones

La vulnerabilidad futura ante el cambio climático en Costa Rica puede reducirse si se toman acciones que resulten en mejoras de la infraestructura, los servicios y la condición de las personas. Algunas acciones que pueden colaborar en reducir la vulnerabilidad incluyen una mayor aplicación del conocimiento y conciencia acerca de las interacciones entre el clima y la sociedad; mejor tecnología y herramientas para la planificación, educación y salud, y prevención...
del riesgo. Si el país logra además dirigir recursos hacia aquellos cantones con mayor índice de vulnerabilidad presente y futura, el país podrá reducir su vulnerabilidad ante los efectos del cambio climático en el sector de recursos hídricos.

De forma opuesta, es posible también que la vulnerabilidad aumente, sino se toman las medidas necesarias y el país se estanca económica y socialmente. Hay que notar que algunos de los cantones más vulnerables, y mencionados arriba, son los que tradicionalmente han sufrido de altos niveles de pobreza, marginación y han estado fuera del alcance de los beneficios del Estado.

De acuerdo a este análisis los indicadores que definen la vulnerabilidad son aquellos que registran los mayores cambios entre cantones. Por ejemplo, el IDH y el IPG presentan diferencias entre cantones, pero esta diferencia nunca es tan marcada como las diferencias que se encuentran en el potencial hídrico per cápita y en el porcentaje de áreas protegidas. Este último indicador tiene mucha relevancia debido a los beneficios que estas áreas brindan al ciclo hidrológico.

Este trabajo ha mostrado que aunque la sociedad costarricense en el 2030 haya logrado avanzar por el camino del desarrollo sostenible, invertir en ampliar su sistema de áreas silvestres protegidas, conservar sus recursos hídricos y alcanzado los acuerdos necesarios para sanear sus finanzas, todavía habrán cantones que tendrán alta vulnerabilidad al cambio climático. En última instancia, la vulnerabilidad futura estará determinada por las medidas de adaptación que tome el país en el presente para reducirla y aumentar el desarrollo humano.

En última instancia, lo que es importante reconocer es que la vulnerabilidad futura estará determinada por las acciones que tome el país en el presente para reducirla. Pueden tomarse acciones de adaptación para que ante una amenaza dada, que el país no puede controlar, los impactos sobre la población sean los menores posibles. Es así como hay inversiones que reducen o preparan al país ante el cambio climático en el futuro. Estas incluyen en primera instancia todas aquellas que tiendan a incrementar el desarrollo humano: inversiones en educación, salud y en bienestar social en general.

Igualmente, en el sector de recursos hídricos deben tomarse una serie de acciones tendientes a asegurar la oferta de agua para la población y los diferentes usos. Tales como reducir la contaminación de las fuentes de agua subterránea, aumentar la capacidad de almacenamiento, aumentar el grado de interconexión de los sistemas y aún aumentar la eficiencia en el uso del agua de todos los sectores. Igualmente, el aumento de la cobertura boscosa en áreas de recarga acuífera.

En este contexto es vital aumentar la capacidad de adaptación al cambio climático del país, y especialmente en aquellos cantones considerados como más vulnerables. El aumento en el nivel de desarrollo humano aumentará la capacidad de adaptación, facilitará la búsqueda de soluciones y aumentará la
resiliencia ante los cambios esperados en el sector de recursos hídricos. Medidas adicionales para a reducir la vulnerabilidad incluyen:

- Diversificación de la producción, investigación y extensión agrícola.
- Interconexión de sistemas de agua.
- Aumento en la capacidad de almacenamiento de agua.
- Disminución de la contaminación del agua. Esto incluye: Sistemas de alcantarillado y la consecuente reducción en el uso de tanques sépticos y tratamiento correcto de las aguas residuales domésticas e industriales.
- Protección de los bosques por medio de nuevas áreas protegidas, ampliación de las existentes o esquemas de pago por servicios ambientales en áreas privadas.
- Medidas tendientes a proteger poblaciones vulnerables, como mujeres en situación de pobreza, discapacitados, adultos mayores y niños.
2 Introducción

Uno de los impactos esperados del cambio climático es que haya modificaciones importantes en el régimen de lluvias, incluyendo la cantidad y la distribución en el tiempo. Esto tendrá implicaciones muy importantes para la agricultura, el uso de agua en los hogares, la industria, el comercio y la generación de energía. En Costa Rica, por ejemplo una gran parte de la electricidad es generada con plantas a filo de agua\(^3\); cambios importantes en la ubicación, cantidad o distribución temporal de las precipitaciones podrían afectar la efectividad de estas plantas. Agricultores que dependen de la lluvia para el éxito de sus cultivos pueden ver sus medios de vida amenazados, si no existe la capacidad o la infraestructura para brindar riego en los momentos requeridos.

El cambio climático afectará de manera diferente a los países, y sectores de la población. Algunos países o grupos, tendrán capacidad de hacer frente a los cambios de temperatura esperados mientras que otros serán más vulnerables. Mientras otros no tendrán la capacidad suficiente para adaptarse y enfrentar estos cambios. Lo mismo ocurre hacia lo interno de un país, en donde algunas áreas tendrán mayores capacidades que otras, para lidiar con los impactos esperados.

El objetivo del presente estudio es “realizar la evaluación de la vulnerabilidad futura, por medio de la construcción de un marco conceptual de análisis que integre los enfoques de desarrollo humano y que incorpore la proyección de los indicadores sociales y económicos utilizados por el IMN en la evaluación de la vulnerabilidad actual, a un plazo de 20 años”. En este estudio se hará una estimación de la vulnerabilidad futura ante el cambio climático de los 81 cantones de Costa Rica para el periodo 2010 - 2030. Se parte de los cálculos de vulnerabilidad actual realizados por el Instituto Meteorológico Nacional (IMN), que considera a la vulnerabilidad como sistémica\(^4\) y una consecuencia del estado de desarrollo, medido de acuerdo a la manifestación de tres componentes: servicios, infraestructura y condición humana. El uso de un enfoque de escenarios permite considerar circunstancias futuras diferentes y diferentes senderos hacia el desarrollo que tendrán un efecto sobre el nivel de adaptación.

La presente consultoría desarrolla una metodología para estimar la vulnerabilidad futura a nivel cantonal del sector hídrico ante el cambio climático, es coordinada por parte del IMN con fondos del Programa de Naciones Unidas para el Desarrollo (PNUD) en Costa Rica y como parte del proyecto

\(^3\) Este tipo de planta genera electricidad con el caudal de un río y sin almacenamiento por lo que cambios en la cantidad de agua tienen efectos importantes.

\(^4\) Es decir que resulta de la combinación de una serie de características sociales, económicas y culturales propias de cada sociedad.
“Mejoramiento de las Capacidades Nacionales para la Evaluación de la Vulnerabilidad y Adaptación del Sistema Hídrico al Cambio Climático en Costa Rica, como mecanismo para disminuir el riesgo al Cambio Climático y aumentar el Índice de Desarrollo Humano”.

La estimación de la vulnerabilidad futura es útil como una herramienta para orientar los esfuerzos destinados a la adaptación al cambio climático. Es decir puede guiar las acciones de quienes toman decisiones de política pública en un futuro cercano relacionado a los temas importantes para reducir vulnerabilidad y los sitios prioritarios. Es así como el uso de escenarios es muy útil, ya que permite tener ideas acerca del estado de las cosas en el futuro, y el movimiento de las variables clave. Para darle peso al tema de género en este caso se incorpora además el “índice de potenciación de género” o IPG, calculado a nivel cantonal por el Programa de las Naciones Unidas para el Desarrollo (PNUD) en Costa Rica.

Este tipo de estudios son el complemento para llegar a determinar el Riesgo, el cual va a ser desarrollado por el IMN, como un componente más del mismo proyecto de Mejoramiento de capacidades.
3 Marco Conceptual

Los impactos del cambio climático esperados para el futuro sobre la población, en relación con el sector de recursos hídricos no serán iguales para todos los individuos. Habrá sectores de la población que serán más vulnerables que otros, dada una cierta amenaza, dependiendo principalmente de sus características socioeconómicas. Un estudio reciente de Retana et al (2011) apoya esta idea, y encuentra que de allí que muchas de las acciones estatales deberán estar orientadas a reducir la vulnerabilidad y aumentar la capacidad de adaptación en estos sectores ante el cambio climático. Por esto, es útil poder ubicar aquellas comunidades más vulnerables e invertir allí los recursos existentes.

La relación entre recursos hídricos y desarrollo humano es fuerte. Por un lado el agua contribuye a la calidad de la vida humana y a que las personas puedan expandir sus libertades, generando ingresos en la agricultura y en la generación de energía, permitiendo el saneamiento y el acceso a la educación. El acceso al agua es una condición necesaria, aunque no suficiente, para el desarrollo humano (PNUD, 2006 y PNUD, 2007). Y casualmente son aquellas poblaciones en condiciones de mayor pobreza las que tienen menos acceso a este recurso.

El desarrollo humano centra su atención en la “expansión de las libertades de las personas”. Concibe a las personas como fines en sí mismas para que desplieguen todo su potencial. El ingreso es considerado un medio para ampliar las oportunidades de los individuos.

En el presente estudio se estima la vulnerabilidad futura ante el cambio climático en el sector recurso hídrico por medio de un grupo de indicadores socioeconómicos, con un enfoque de escenarios, a escala cantonal. Se hace énfasis en el índice de desarrollo humano y se introduce el índice de potenciación de género como un determinante de la vulnerabilidad. Este último es importante ya que “se centra en las oportunidades de las mujeres, y refleja la desigualdad con respecto a los hombres…” (PNUD, UCR, 2007).

De acuerdo con una revisión bibliográfica realizada para este estudio, es de esperar que las mujeres reciban una proporción mayor de los efectos del cambio climático. Las mujeres en muchos países representan el grueso de la fuerza de trabajo en la agricultura, un sector vulnerable. Si ocurre una reducción en la producción (pesca o agricultura), algo que podría ocurrir con el cambio climático, tendrán que encontrar fuentes adicionales de ingreso trabajando, por ejemplo, como empleadas domésticas (UNFPA, 2009). Además, las mujeres tienen un papel mayor en el manejo de los hogares y en el cuidado de familiares, incluyendo los hijos, lo que limita su movilidad y aumenta su vulnerabilidad ante desastres naturales, tales como inundaciones repentinas.
3.1 Cambio Climático, Recursos Hídricos y Desarrollo Humano

La adaptación al cambio climático es el ajuste en los sistemas naturales y humanos como respuesta a estímulos climáticos actuales y esperados o sus efectos, los cuales moderan los daños o sacan ventaja de las oportunidades (IPCC, 2007).

El impacto del cambio climático sobre los sistemas sociales, es un tema de gran importancia para el desarrollo humano. Este impacto será percibido aunque se redujeran drásticamente las emisiones en todo el mundo, por lo que la adaptación ante este cambio cobra cada vez mayor importancia. Es decir, ante un cambio inminente en el clima, la preparación que tenga la sociedad para lidiar con ellos será determinante para su sobrevivencia. Por esa razón la adaptación se considera crucial para la sobrevivencia humana y de los ecosistemas en general.

El sector de recursos hídricos es de particular importancia cuando se analiza el cambio climático debido a que las consecuencias principales esperadas de este fenómeno, están relacionadas con aumentos y disminuciones en la precipitación, así como cambios en su patrón estacional. Además, este recurso representa un vínculo entre el sistema natural y el sistema social, por ejemplo la producción agrícola está asociada muchas veces a regímenes hídricos específicos, cuyas variaciones afectan la calidad y cantidad de los productos. Por eso toman gran importancia en la discusión sobre vulnerabilidad. En Costa Rica, el café es un ejemplo claro de un cultivo muy importante para la economía y que requiere patrones de lluvia muy marcados para tener una buena productividad. La producción de electricidad también es dependiente del agua y su distribución en el tiempo. En todo este ciclo, los bosques ubicados en las zonas de recarga tienen un papel muy importante en la infiltración de agua, reduciendo las crecidas y al mismo tiempo recargando los acuíferos de los cuales depende la población del Valle Central.

Hay que tomar en cuenta que no todos los países, o cantones en este caso, van a tener los mismos recursos para la adaptación al cambio climático. Esto requiere hacer cambios importantes en sectores como la producción de alimentos en la agricultura, la generación de energía y el aprovechamiento del agua potable. Es muy útil entonces conocer aquellos con mayor vulnerabilidad para así dirigir recursos para aumentar capacidades.

Los recursos hídricos pueden verse afectados de muchas formas por el cambio climático, incluyendo, de acuerdo al IPCC (2008) los siguientes:

- Mayor variabilidad espacial y temporal en la precipitación. Afecta la producción económica y la provisión de agua potable. Reducción en la seguridad alimentaria.
- Mayor frecuencia de inundaciones y sequías. Esto afectará la calidad del agua y exacerbará muchas formas de contaminación del agua (sedimentos, nutrientes, carbono orgánico disuelto).

- La operación de la infraestructura existente para el aprovechamiento de los recursos hídricos (represas para la generación hidroeléctrica, sistemas de riego y drenaje). Plantea un reto al supuesto tradicional de que la hidrología pasada brinda una buena guía para condiciones futuras.

- Prácticas actuales de manejo no son suficientemente robustas para lidiar con los impactos del cambio climático.

Todos estos aspectos son muy relevantes para el caso de Costa Rica, en donde un sector importante de la economía está basado en el sector agrícola (9,2% del PIB en el 2010 (Banco Central de Costa Rica, 2011)). Adicionalmente el sector hídrico es un sector muy importante en Costa Rica y uno de los que más puede verse afectado por el cambio climático (ver cuadro 1). El agua es un factor entre otros, que permite que las personas aprovechen su potencial como ser humanos (Retana et al, 2011). El país ha hecho inversiones en infraestructura, como embalses en Arenal y Angostura, con base en los regímenes de lluvia existente: cambios en estos patrones podrían disminuir significativamente la productividad de estos proyectos.

**Cuadro 1. Costa Rica: relevancia del agua para sectores productivos.**

<table>
<thead>
<tr>
<th>Sector</th>
<th>Importancia del recurso hídrico</th>
<th>Importancia del sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación Hidroeléctrica</td>
<td>Mayor usuario de agua en el país (uso no consuntivo).</td>
<td>Entre el 75% y 80% de la generación eléctrica del país se obtiene por este medio.</td>
</tr>
<tr>
<td>Uso Agrícola</td>
<td>Para la producción de alimentos, más de 120,000 hectáreas irrigadas. Otros usos: sector pecuario y piscícola.</td>
<td>La producción agrícola nacional representa aproximadamente 9% del PIB. De ésta, los principales productos bajo riego son: arroz, melón, caña de azúcar, piña, hortalizas.</td>
</tr>
<tr>
<td>Uso Industrial</td>
<td>Las industrias utilizan el agua en sus procesos productivos, especialmente la Agroindustria y la Industria Alimentaria</td>
<td>La industria y la agroindustria representan aproximadamente 22% del PIB. El subsector industrial de mayor crecimiento y con mayor potencial en el corto y mediano plazo es la industria alimentaria.</td>
</tr>
<tr>
<td>Uso para Turismo</td>
<td>En todo el país: riego de áreas verdes, campos de golf, consumo humano y recreativo, agua para piscinas e infraestructura hotelera.</td>
<td>De acuerdo a ICT, el turismo representa aproximadamente el 6% del PIB en el año 2010.</td>
</tr>
</tbody>
</table>

Fuente: Plan Nacional de Gestión Integrada de los Recursos Hídricos, EGIRH. 2005 y con base en cuentas nacionales BCCR.

No obstante su importancia, el acceso a los recursos hídricos, y a los servicios relacionados, está usualmente condicionado por aspectos de gobernabilidad y de la estructura de poder (PNUD, 2006). Es decir, que existen poblaciones que se encuentran en una posición de desventaja en cuanto a los beneficios para la
vida que puede brindar el acceso al agua. Y esto no se relaciona con la cantidad de agua, sino con su administración y gobernabilidad así como con factores socioeconómicos. Igualmente, estas personas usualmente se enfrentan a condiciones de mayor amenaza climática.

En el caso de Costa Rica, el país se ha planteado metas que están directamente relacionadas con los recursos hídricos. Estas incluyen algunas de tipo social como la reducción de la pobreza, y la disminución de la mortalidad infantil y el aumento en la cobertura del servicio de agua potable. También hay metas de tipo económico como el aumento significativo de las exportaciones y del número de turistas que llegan al país (Echeverría et al, 2009).

Estas metas tienen como fin último el desarrollo humano de las personas. Claramente los recursos hídricos contribuyen a que el individuo alcance todo su potencial. La ausencia de acceso a los recursos hídricos para los diferentes usos representa un obstáculo para la libertad. Por tanto, el tener la posibilidad de utilizar los recursos hídricos permite que la sociedad funcione, promueva la actividad productiva y los niveles de salud adecuados (PNUD, 2007).

Adicionalmente, Apud (2007) ha identificado a la higiene de los sanitarios (que depende del acceso al agua) como un factor de deserción escolar para las niñas e indica que “el agua potable y un saneamiento adecuado son tan importantes para la enseñanza como lo pueden ser los lápices, los libros y los maestros”.

### 3.2 Vulnerabilidad

La vulnerabilidad es el grado al cual un sistema es susceptible a, o incapaz de, enfrentarse a efectos adversos del cambio climático incluyendo variabilidad climática y eventos extremos (IPCC, 2007). La vulnerabilidad es una función del carácter, magnitud y tasa de variación del clima a los cuales un sistema está expuesto, su sensibilidad y su capacidad adaptativa. Involucra tres elementos clave: exposición, sensibilidad y resiliencia. La exposición se refiere al grado (tiempo y espacio) en que un sistema está en contacto con la amenaza. La sensibilidad es el grado de afectación por la exposición y normalmente se puede referir a los impactos y su magnitud. La resiliencia es la capacidad de lidiar, recuperarse o adaptarse ante la amenaza del clima. Por lo tanto, la vulnerabilidad contempla no solo los impactos sino la capacidad de adaptación (ENCC, 2009).

Si bien es cierto, el agua es un recurso escaso, todavía los límites físicos no han sido alcanzados y la escasez del agua, en buena medida, tiene su origen en la inequidad, la pobreza y la distribución del poder. Como ejemplo PNUD (2006) en el Informe de Desarrollo Humano cita las diferencias en abastecimiento de agua y alcantarillado, que no están correlacionadas con la cantidad de agua disponible sino más bien con las instituciones. El informe también llama la atención hacia el tema del cambio climático y las 125 millones de personas que
podrían verse afectadas con malnutrición al darse una disminución la producción de alimentos.

Los factores que determinan esta vulnerabilidad son en su mayoría de tipo socioeconómico e institucional ya que están relacionados con las capacidades que tenga una población para tener resiliencia ante distintos tipos de eventos (y no solo hidrometeorológicos). PNUD (2006) pone como ejemplo el caso de India, que pierde 25 mil vidas al año por motivos relacionados con la sequía, mientras que Australia, que cuenta con un nivel de amenaza similar, no se pierde ninguna. Por ejemplo, la capacidad de almacenamiento de agua es un indicador de vulnerabilidad: mientras que Estados Unidos tiene 6,000 metros cúbicos por persona de almacenamiento, México tiene 1000 (Banco Mundial, 2005) valor que es posiblemente similar al de Costa Rica⁵.

En Costa Rica, se ha hecho un esfuerzo por parte del IMN para calcular el nivel de vulnerabilidad actual con base en una serie de indicadores que permiten cuantificarla a nivel de cantón. Con esta base, la importancia del cálculo de la vulnerabilidad futura radica en lograr establecer medidas de adaptación que optimicen los recursos para garantizar una correcta gestión del riesgo. Además permiten identificar cuáles son los cantones más vulnerables y acciones preventivas. En dicho trabajo Retana et al (2011) utilizan 14 indicadores agrupados en tres categorías, como se verá más adelante y obtiene como resultado el mapa de Vulnerabilidad Actual (ver Figura 3).

⁵ Considerando por ejemplo que el embalse Arenal almacena más de 2000 millones de metros cúbicos, lo que representa aproximadamente 700 metros cúbicos por habitante.
Al comparar los resultados del análisis realizado por Retana et al (2011) con Índice de Desarrollo Humano Cantonal elaborado por el PNUD (2005), se detectó una relación entre alta vulnerabilidad y bajo índice de desarrollo humano. Por ejemplo, los cantones de La Cruz, Upala, Guatuso, Los Chiles, Sarapiquí, Buenos Aires, y Corredores entre otros, tienen un nivel alto de vulnerabilidad y bajo desarrollo humano. Por el contrario, cantones como San José, Escazú, Curridabat, San Pedro, Belén y Santo Domingo que tienen un nivel alto de desarrollo humano comparado a los otros cantones, tienen una baja vulnerabilidad. Es decir, ambas variables están muy correlacionadas entre sí y el índice de desarrollo humano, tiene una gran influencia en determinar el nivel de vulnerabilidad del sector recursos hídricos al cambio climático según el enfoque utilizado por Retana et al (2011). Sin embargo, como se discute más adelante esto se debe en gran medida a la selección de indicadores realizada.

En cuanto a enfoque los autores citan a Villagrán (2006) para visualizar el riesgo en función de la amenaza y la vulnerabilidad, de la siguiente manera:

\[ R = f(\text{amenaza, vulnerabilidad}) \]
La amenaza se refiere al cambio climático y sus efectos, incluyendo sequías e inundaciones, mientras que la vulnerabilidad se asocia con la habilidad que tiene la sociedad de enfrentarlos.

La evaluación de la vulnerabilidad ante el cambio climático es un tema complejo que involucra aspectos económicos, sociales y culturales que se combinan con aspectos físicos. Los efectos físicos están íntimamente ligados con los recursos hídricos: cambios en la precipitación, tanto positivos como negativos pueden desencadenar una serie de eventos que afectan al ser humano y su desarrollo. Estos incluyen sequías, inundaciones, y en general cambios en el patrón de la lluvia en el tiempo y el espacio. Lo mismo ocurre con los cambios en la temperatura que pueden provocar por ejemplo una mayor evapotranspiración y mayores requerimientos en el sector agrícola.

3.3 Género, Cambio Climático y Recurso Hídrico

El acceso de las mujeres al agua y su papel en la gestión de los recursos hídricos están determinados por las relaciones, estructuras socioeconómicas y de poder. Con base en “La guía de recursos: Transversalización del enfoque de género en la gestión del agua” desarrollada por PNUD y GWA (2006), hay bastante relación entre el género, específicamente las mujeres, y el cambio climático. También cita cómo en algunos casos, la incorporación de las mujeres en los procesos de planificación de proyectos sobre gestión del agua, determinan el éxito de la implementación.

Como se ha mencionado anteriormente, la mayoría de los autores concuerdan en que usualmente las mujeres ejercen un papel central en el acceso, manejo y distribución del recurso hídrico. El agua está estrechamente vinculada con el trabajo cotidiano en el interior de los hogares, trabajo que históricamente ha recaído sobre la mujer. Es vital para preparar alimentos, lavar la ropa, asear la vivienda, la higiene familiar y la producción de alimentos. Esto las hace más vulnerables a cambios en el abastecimiento y disposición de agua.

No obstante, también son agentes de cambio debido a una distribución inequitativa de las responsabilidades y al rol primordial que desempeñan. Sin embargo, este potencial sólo se puede lograr a través de políticas de empoderamiento de las mujeres, que fomenten su participación de toma de decisiones. Según Engelman (2009) algunas de las causas por las cuales las mujeres enfrentan mayores retos ante el cambio climático son un mayor nivel de pobreza, menor reconocimiento sobre su productividad económica, menor poder sobre sus propias vidas y una responsabilidad desproporcionada en cuanto a la reproducción y cuidado de los hijos. Por ejemplo, las mujeres y los niños y niñas tienen 14 veces más posibilidades de morir que los hombres ante una emergencia o desastre natural (PNUD, 2003). Las razones para esto parecen estar fundamentadas en aspectos culturales y socioeconómicos.

Por otra parte, según UICN (2007) un 70% de las personas en condiciones de pobreza a nivel mundial son mujeres. Lo anterior se debe en parte también a
que se somete a las mujeres a una dependencia directa de los recursos naturales para la realización de sus labores domésticas (acarrear agua, colectar leña y forrajes). Además tienen poco acceso a la tecnología y al crédito. En Costa Rica, en las zonas rurales el 75% de los hogares con jefatura femenina son considerados pobres (INEC, 2002). Estos hogares al enfrentar situaciones adversas extremas (incluyendo desastres naturales), tienen menor capacidad de respuesta.

Adicionalmente en el Reporte del 2007 del Panel Intergubernamental de Cambio Climático asegura que las mujeres “están desproporcionadamente involucradas en actividades dependientes de los recursos naturales, tales como la agricultura, en comparación con actividades asalariadas.”

Se puede citar como ejemplo de caso sobre género y manejo del recurso hídrico, en Costa Rica, la Asociación de Mujeres de Quebrada Grande de Pital de San Carlos. La Asociación está compuesta por nueve mujeres quienes antes del 2000 se dedicaban sólo a labores domésticas en sus casas y al cuidado de sus hijos, dejando como único proveedor “económico” a sus respectivos cónyuges. Lo anterior, provocaba tensión económica en las familias debido a contar con un solo ingreso y además las mujeres se sentían “sub utilizadas”. Si bien, debieron romper una primera barrera machista han logrado demostrar que su papel como administradoras del proyecto es satisfactorio, gestionando adecuadamente la producción de tilapia local y la protección del bosque de reserva natural de la comunidad, han desarrollado simultáneamente el turismo local (Proyecto denominado “24 Horas con una familia Campesina”) y han logrado gestionar equitativamente el agua (Franco, M. 2008).

### 3.4 Vulnerabilidad Futura y Uso de Indicadores

Aunque el pronóstico de la vulnerabilidad futura es novedoso, existen diversas técnicas y maneras de enfocarla. Algunas técnicas son de tipo cualitativas y otras cuantitativas. Según la literatura consultada es recomendable realizar actividades interactivas entre expertos ya que ayuda a definir el marco inicial de trabajo de la vulnerabilidad; lo anterior, mediante la sugerencia de los grupos más vulnerables, factores institucionales, y tomando en cuenta los recursos y actividades económicas, así como el tipo de amenazas y oportunidades (consecuencia de las variaciones climáticas). Existen también técnicas más formales como las matrices de impacto cruzado, tipologías de atributos múltiples, como por ejemplo “la caracterización de la capacidad adaptativa” (Brooks et al. 2004). Antes de iniciar con análisis cuantitativos, una estrategia útil, es implementar cuadros y listas de chequeo para identificar prioridades y brechas (Downing, et al, 2004).

En este campo, la mayoría de estudios utiliza juegos de indicadores para la caracterización de escenarios futuros. Sin embargo, el abordaje varía en relación con su profundidad, alcance, vínculos entre entornos (social, económico,
ambiental) y atributos de vulnerabilidad, así como de fuerzas impulsoras que puedan afectar la vulnerabilidad futura (CATHALAC, 2008).

Normalmente, los indicadores utilizados son de tipo socioeconómico. Por ejemplo, en un ejercicio de capacitación para la evaluación de estrategias de vulnerabilidad y adaptación, ENDA (sin fecha), proponen: pobreza, nivel de acceso a servicios básicos, población en riesgo, infraestructura en riesgo, riesgo a desastres (población afectada), pérdidas por desastre, riesgo al desastre (PIB afectado). Stanton et al (2011) por su parte utilizan para el cálculo de la vulnerabilidad tres indicadores: porcentaje de la economía dedicada a la agricultura y el turismo, la proporción de la población que vive en la costa, y la disponibilidad de agua (medida por el número de personas por metro cúbico de agua potable disponible).
4 Metodología

La Figura 4 muestra las etapas comprendidas para realizar esta investigación. La base de la investigación es el trabajo realizado por Retana et al (2011) en el cual se definieron una serie de indicadores de vulnerabilidad. Estos indicadores fueron desarrollados con base en otras consultorías adicionales comisionadas por el IMN. Con base en esa lista inicial de indicadores, y una revisión exhaustiva de la literatura relacionada con el tema, además del criterio de experto del consultor y la contraparte en el IMN, se definen los indicadores socioeconómicos. Para esta selección se toman en cuenta diversos aspectos, como por ejemplo que sean indicadores con una relación robusta con cambio climático y recursos hídricos, que puedan obtenerse con cierta facilidad, y que pueda estimarse su trayectoria hacia el futuro.

Paralelamente se desarrollan tres escenarios, llamados en este caso “normal”, “alto desarrollo humano” y “retroceso”. Estos escenarios consisten en líneas narrativas (que se describen en la Sección 4.3) que son elaboradas tomando en cuenta criterio de experto y ejemplos de la práctica. Se basan en opiniones con respecto a la condición futura y los llamados motores de cambio. Estos últimos se refieren a aquellas fuerzas, o tendencias, internacionales o nacionales, que afectarán el valor futuro de un indicador. Por ejemplo, el canon de aprovechamiento y canon por vertidos son instrumentos económicos para la gestión de agua que son un motor de cambio interno para el indicador de disponibilidad hídrica por persona, debido a que permite financiar la gestión del agua y también promueve aumentos en la eficiencia por parte de todos los sectores usuarios.

Por otra parte ya hay tendencias y políticas al nivel nacional que determinarán el estado de la gestión de los recursos hídricos en el futuro y el nivel de vulnerabilidad en que se encontrará el país ante el cambio climático. Estas incluyen, por ejemplo las políticas ambientales incluyendo áreas protegidas, recursos hídricos, emisiones de carbono, comerciales, electricidad y la producción. En cada uno de los escenarios, los supuestos varían para reflejar las líneas narrativas y estimar el valor del indicador en el futuro.

De esta combinación entre tendencias, motores de cambio y criterio de experto, se generan los diferentes caminos futuros para los valores de cada uno de los indicadores seleccionados. De esta manera resultan valores para los 81 cantones de Costa Rica, con un horizonte de planificación al 2030.
El cálculo de la vulnerabilidad futura del sistema hídrico se hace en cinco pasos:

1. La selección de indicadores,

2. Definición de motores de cambio,

3. Definición de escenarios,

4. Calculo de valores y reglas para la proyección de indicadores para años 2015-2020-2025-2030 y,

5. Análisis de resultados.
4.1 Selección de Indicadores

Se parte de un grupo de 14 indicadores brindados por el IMN, véase cuadro 2, producto de dos consultorías, una sobre aspectos biofísicos y otra sobre aspectos socioeconómicos a nivel cantonal en todo el país. De estos se eliminaron algunos y se agregaron otros. Los datos actuales generados por Retana et al. (2011) dan el punto de partida, y están disponibles para 81 cantones. La escala de cambios a utilizar en las proyecciones es a nivel nacional. En ese caso los indicadores se agruparon en tres categorías: infraestructura, servicios y condición humana (ver Cuadro 2).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructura</td>
<td>1. Vivienda con acueducto</td>
</tr>
<tr>
<td></td>
<td>2. Vivienda con tanque séptico</td>
</tr>
<tr>
<td></td>
<td>3. Vivienda en mal estado</td>
</tr>
<tr>
<td></td>
<td>4. Infraestructura vial</td>
</tr>
<tr>
<td>Servicios</td>
<td>5. Vivienda con electricidad</td>
</tr>
<tr>
<td></td>
<td>6. Habitantes por EBAIS</td>
</tr>
<tr>
<td></td>
<td>7. Disponibilidad de agua per cápita</td>
</tr>
<tr>
<td></td>
<td>8. Áreas sin zonas protegidas</td>
</tr>
<tr>
<td></td>
<td>9. Consumo de agua del sector agropecuario</td>
</tr>
<tr>
<td>Condición Humana</td>
<td>10. Defunciones por IRAS</td>
</tr>
<tr>
<td></td>
<td>11. Población dependiente</td>
</tr>
<tr>
<td></td>
<td>12. Población discapacitada</td>
</tr>
<tr>
<td></td>
<td>13. Índice de Desarrollo Humano</td>
</tr>
<tr>
<td></td>
<td>14. Necesidades Básicas Insatisfechas</td>
</tr>
</tbody>
</table>

Fuente: Retana et al, 2011

Cada uno de estos indicadores es bien justificado en el estudio de Vulnerabilidad Actual. Sin embargo, debido a que en muchos estudios se utilizan entre tres y cinco indicadores socioeconómicos para estimar la vulnerabilidad futura en el presente estudio se redujo la lista original de indicadores de Retana et al. (2011) a siete indicadores tratando de adecuarla al trabajo requerido.

Lo anterior se hizo tomando en cuenta varios criterios, incluyendo la opinión profesional de este consultor, personal especializado del IMN, y entrevistas a otros expertos. La idea fue seleccionar aquellos indicadores que fueran más relevantes y que permitieran llevar a cabo el trabajo planteado inicialmente. Además, se consideraron criterios de selección tales como los sugeridos por Newson et al. (2008), donde se recomienda por ejemplo que los indicadores deben ser fáciles de entender y comunicar a no científicos/expertos y público en general, informar los procesos de toma de decisiones, los datos deben estar disponibles, ser de fácil acceso, ser sostenibles en el tiempo, tener un costo razonable y ser de buena calidad.

Adicionalmente se consideró que fuera factible proyectar su valor, ya sea de forma cualitativa o cuantitativa, hacia el futuro. Además que tengan relevancia

Complementariamente se realizó un taller que sirvió para fortalecer la escogencia de los indicadores; participaron expertos de la Academia y de varias instituciones gubernamentales que están en el área temática de cada uno de los indicadores escogidos.

Considerando los criterios mencionados arriba, se hace un análisis preliminar para determinar el grado de correlación entre los indicadores utilizados por el IMN (Retana et al, 2011). Se partió de la hipótesis de que muy posiblemente las viviendas sin electricidad estarían altamente correlacionadas con las viviendas en mal estado, las viviendas sin acueducto, y las necesidades básicas insatisfechas. Efectivamente que estas variables se mueven juntas: la variable Necesidades Básicas Insatisfechas (NBI) tiene un índice de correlación con todas las otras variables de más de 0.9. Sorpresivamente la Población dependiente (PD) también estaba muy vinculada a NBI (ver Cuadro 3). Es decir que hay una importante clase de hogares que tiene una condición de pobreza donde se conjugan estas características. Esto significa que estos indicadores se mueven juntos por lo que un subgrupo puede ser suficiente para cuantificar un grado, o nivel relativo, de vulnerabilidad.

Cuadro 3. Correlación entre indicadores.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>VSE</th>
<th>VME</th>
<th>VSA</th>
<th>PD</th>
<th>NBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viviendas sin electricidad (VSE)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivienda en mal estado (VME)</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivienda sin acueducto (VSA)</td>
<td>0.81</td>
<td>0.82</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Población dependiente (PDep)</td>
<td>0.78</td>
<td>0.82</td>
<td>0.83</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Necesidades Básicas Insatisfechas (NBI)</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: elaboración propia, 2011

El Índice de Desarrollo Humano (IDH) tiene una correlación importante con todos los indicadores del Cuadro 3. Además, contempla aspectos relacionados con los ingresos, la salud y la educación todos muy importantes para reducir la vulnerabilidad (ver Figura 5). Por esta razón, este indicador se mantiene en el cálculo de la vulnerabilidad futura y se eliminan los otros.
Figura 5. Índice de Desarrollo Humano y sus Componentes.

Al comparar los valores de vulnerabilidad actual con los del IDH presentados por estos autores, se demuestra la gran relación que tienen ambas variables. Por ejemplo, de los 15 cantones con mayor vulnerabilidad, 11 pertenecen también al grupo de los 15 con menor índice de desarrollo humano. La Figura 6 compara la relación entre el índice de Desarrollo Humano y el índice de Vulnerabilidad Actual calculado por Retana et al (2011). Se puede evidenciar claramente la misma tendencia en ambos índices.
Figura 6. Comparación entre índice de desarrollo humano y índice de vulnerabilidad actual.

Hay otro grupo de indicadores que permiten reducir la lista un poco más. Defunciones por Enfermedades Bronco Respiratorias Agudas (ó IRAS), Infraestructura vial y Habitantes por EBAIS son tres indicadores utilizados por Retana et al (2011) que presentan una utilidad limitada en este caso concreto. En el caso de IRAS, y aunque efectivamente el cambio climático podría en algunos casos generar condiciones para que aumenten, su vínculo con el sector de recursos hídricos no es tan fuerte. En este sentido, prácticamente todas las enfermedades calificarían ya que requieren de un ambiente saludable y acceso al agua para aspectos de higiene. Lo anterior según la Dra. Ethel Trejos, quien asegura que casos diarreicos sería una clase de enfermedad más relevante y relacionada con el recurso hídrico. Además, el Índice de Desarrollo Humano incluye dentro de sus componentes la esperanza de vida como un indicador de una vida larga y saludable, como ya se mencionó.

El indicador de infraestructura vial, mide la cantidad total de kilómetros que hay en un determinado cantón sin hacer una corrección por el tamaño del cantón.

---

6 Comunicación personal, vía telefónica, el 1 de junio del 2011, con la Dra. Ethel Trejos del Ministerio de Salud
Esto puede dar una falsa impresión de vulnerabilidad en cantones pequeños pero con buena cobertura de vías. Hay que mencionar que mejores indicadores para el sector de recursos hídricos serían en este caso la capacidad de almacenamiento, el grado de interconexión de sistemas y el número de fuentes de abastecimiento (Stanton, 2011). La eliminación del indicador de Habitantes por EBAIS se justifica al evaluar la correlación con el índice de vulnerabilidad estimado por Retana et al (2011) que es de -0.39. Es decir que es un indicador que no explica muy bien los resultados de vulnerabilidad actual. Además, no hay una buena base para hacer su proyección al año 2030. Aún así hay que reconocer que los servicios son importantes en un cantón que pretenda aumentar su capacidad de adaptación, y por eso deberá retomarse adelante en las recomendaciones. El número de EBAIS permite una mayor disponibilidad de servicios que permitan disminuir la vulnerabilidad. Lo mismo ocurre con el indicador relacionado con el consumo de agua en el sector agropecuario. Por un lado, no hay competencia con el consumo doméstico debido a que este último se basa en fuentes subterráneas; y por otro mayor consumo puede estar correlacionado con mayor capacidad de almacenamiento, lo que se considera una buena medida de adaptación.

Se mantiene en la lista de indicadores el porcentaje de viviendas con tanque séptico, como una aproximación a la potencial contaminación de aguas subterráneas en zonas pobladas; la población de discapacitados, como una población intrínsecamente vulnerable; la cantidad de agua disponible por persona, como un indicador de escasez relativa; y la cantidad de áreas sin zonas protegidas.

Se incorpora al grupo de indicadores el Índice de Potenciación de Género (IPG), lo señalado por PNUD y UCR (2007) que toma en cuenta “las oportunidades de las mujeres, refleja la desigualdad con respecto a los hombres en tres áreas claves: participación política y poder para la toma de decisiones, participación económica y poder para la toma de decisiones y poder sobre los recursos económicos.” Esto porque como se ha visto en el marco conceptual cada uno tiene un papel diferente ante los impactos del cambio climático. Este indicador permite introducir la dimensión de género, de acuerdo a los componentes de este índice: participación política, poder de decisión, participación económica y control de los recursos económicos. Puede rescatar en cierta medida las diferencias que puedan existir entre cantones. Es importante recordar el papel que tiene la mujer en relación con la accesibilidad al recurso hídrico: no solo son un grupo vulnerable al cambio climático sino que son agentes de cambio climático (Engelman. R, 2009).

Finalmente, se agrega densidad poblacional que es un buen indicador para la posible recarga de los servicios. Además, existen estimados realizados por INEC a nivel cantonal y proyecciones de la población con varios escenarios hasta el 2030. Este indicador puede dar una buena indicación de sobrecarga de la infraestructura y de los servicios de salud.
Tomando en cuenta las referencias anteriormente mencionadas, así como mediante un proceso de selección de indicadores que se detalló en la sección 3.1, se utilizaron en la estimación de la vulnerabilidad futura los indicadores que se presentan en el Cuadro 4.

### Cuadro 4. Indicadores seleccionados para el cálculo de la Vulnerabilidad Futura

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Importancia para Vulnerabilidad Futura</th>
</tr>
</thead>
</table>
| Índice de Desarrollo Humano (IDH) | • Incorpora aspectos de salud, educación e ingreso, brindando una muy buena idea acerca del nivel de vulnerabilidad del sector de recursos hídricos al cambio climático de una población.   
  • Es un indicador con una muy buena institucionalidad.  
  • Está altamente correlacionado con el índice de vulnerabilidad calculado por Retana et al (2011).                                                                                           |
| Índice de Potenciación de Género (IPG) | • Contempla e introduce la dimensión de género. Como se indicó este índice brinda una idea acerca de las capacidades de las mujeres para adaptarse al cambio climático y reducir su vulnerabilidad.   
  • El índice incluye su participación política, participación económica y control de los recursos económicos.  
  • Como se ha visto la pobreza aumenta la vulnerabilidad y este indicador nos da una idea acerca de las diferencias entre géneros. Es de esperar que los cantones con un mejor IPG sean menos vulnerables a cambios en la disponibilidad de los recursos hídricos. |
| Vivienda con Tanque séptico (VTS) | • Importante porque su manejo inadecuado puede llegar a afectar fuentes de agua subterráneas. Mayores valores indican mayor vulnerabilidad. En Costa Rica se limita posiblemente a zonas urbanas con alta densidad de población ubicadas sobre áreas de recarga acuífera, por ejemplo al noroeste de la ciudad de San José.  
  • Aspectos que pueden modificar este porcentaje en el futuro incluyen el desarrollo del proyecto de Alcantarillado Metropolitano.                                                      |
<p>| Área sin zona protegida (ASP)     | • La reducción de la capacidad de infiltración del suelo debido a procesos de urbanización y cambio de uso de la tierra representa una vulnerabilidad ante el cambio climático. Este cambio también favorece las inundaciones y las crecidas. Es un indicador de la capacidad de almacenamiento de agua y de un efecto retardador de las crecidas. En efecto, lo que mide es la cantidad de áreas protegidas como porcentaje del área total del cantón. |
| Potencial Hídrico per cápita (PHC) | • Entre menos cantidad de agua haya por persona, mayor será la vulnerabilidad ante cambios en la disponibilidad de agua. En un futuro este indicador puede ser mejorado para que incluya también un factor de contaminación del agua, ya que con la información disponible en la actualidad no es posible. |
| Población de discapacitados        | • Población vulnerable per se                                                                                                                                                                                                                               |</p>
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Importancia para Vulnerabilidad Futura</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PD)</td>
<td>• Poca movilidad los coloca en una situación de riesgo ante eventos hidrometeorológicos</td>
</tr>
<tr>
<td></td>
<td>• Esta población presenta una gran dependencia de servicios y cuidados relacionados con un buen servicio de agua de buena calidad.</td>
</tr>
<tr>
<td>Densidad poblacional</td>
<td>• Es un factor de vulnerabilidad ya que puede recargar los servicios existentes. Permite tener una idea acerca de la demanda de recursos hídricos y de salud.</td>
</tr>
</tbody>
</table>


4.2 Motores de Cambio

Los motores de cambio son fuerzas externas o internas que van a afectar la trayectoria de los indicadores estudiados. Son tendencias que influyen en la capacidad futura de adaptación del sector recursos hídricos al cambio climático. Algunos son tendencias globales, como por ejemplo el incremento reciente en los precios de los alimentos y el aumento en el precio de los combustibles. O la recesión mundial que tiene a los países industrializados en problemas económicos y financieros en la actualidad.

Definitivamente una de las fuerzas de cambio más grande es la situación de la economía global. Durante la época del auge inmobiliario y de los servicios financieros en los Estados Unidos y Europa, Costa Rica enfrentó no solo un aumento de la demanda por sus productos y buenos precios sino también un aumento en la inversión extranjera (reflejada por ejemplo en un auge en la construcción de proyectos de tipo habitacional en Guanacaste. Una gran cantidad de estos proyectos han sido detenidos y esperan por la reactivación económica. Esto tiene que ver con los recursos hídricos, debido a que dependiendo de la fuerza que muestre la economía mundial en los próximos años será la demanda de recursos hídricos en áreas con menor potencial.

Otra gran fuerza de cambio es el crecimiento de la población, que tiene que ver con tendencias, cultura y políticas públicas. La población va a determinar el potencial hídrico por persona así como la densidad de población en cada cantón. Esta variable está influenciada además por procesos migratorios, tanto entre el mismo país, cuando se dan movimientos por ejemplo hacia ciudades medianas como San Ramón, Liberia y Orotina, como internacionales. Estos últimos son muy inciertos y no solo difíciles de predecir, sino que también pueden ocurrir en ambas direcciones: aumentos o disminuciones en la población total.

La orientación de la economía, en cuanto al uso de herramientas de la gestión de los recursos hídricos es otra fuerza de cambio. En tanto haya voluntad para el uso de instrumentos económicos como cánones y cargos por contaminación del agua, ocurrirían cambios en la forma de manejar los recursos hídricos para una mayor adaptación al cambio climático. Por ejemplo, el pago de un canon de...
agua obliga a los agentes económicos a implementar también medidas de eficiencia en el uso del agua, claramente una medida de adaptación.

Adelante, en el análisis de cada uno de los indicadores (ver Sección 6) se incluye el impacto de los motores de cambio sobre los indicadores socioeconómicos planteados. A continuación en el Cuadro 5 se presentan estas fuerzas motoras, o motores de cambio, que afectarán según cada escenario, las proyecciones de los indicadores.

**Cuadro 5. Motores de Cambio por Indicador**

<table>
<thead>
<tr>
<th>INDICADOR</th>
<th>MOTORES DE CAMBIO INTERNOS</th>
<th>MOTORES DE CAMBIO EXTERNOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de Desarrollo Humano (IDH)</td>
<td>• Tratados comerciales&lt;br&gt;• Políticas económicas&lt;br&gt;• Situación financiera de la Caja y&lt;br&gt;regímenes de pensiones&lt;br&gt;• Salud económica del Gobierno Central&lt;br&gt;• Nivel de actividad económica</td>
<td>• Precio de los combustibles&lt;br&gt;• Recuperación económica en Estados Unidos&lt;br&gt;• Recuperación económica mundial&lt;br&gt;• Nivel de cooperación para el desarrollo internacional</td>
</tr>
<tr>
<td>Indice de Potenciación de Género (IPG)</td>
<td>• Mayor participación&lt;br&gt;• Políticas públicas del ámbito económico, capacitación para mujeres desempleadas</td>
<td>• Nivel de ayuda para el desarrollo dedicada a temas de género</td>
</tr>
<tr>
<td>Potencial hídrico per-cápita (PHC)</td>
<td>• Crecimiento de la población.&lt;br&gt;• Políticas de inmigración&lt;br&gt;• Aplicación de instrumentos económicos para la gestión de los recursos hídricos (canon de aprovechamiento de agua, Decreto 32868 del 30 de enero 2006 y canon ambiental por vertidos de aguas. Decreto 31176 del 22 del abril 2003).&lt;br&gt;• Contaminación ambiental&lt;br&gt;• Políticas y financiamiento para la reforestación y conservación de zonas de recarga por medio de mecanismos de pago por servicios ambientales y la ampliación y designación de Áreas Silvestres Protegidas&lt;br&gt;• Política de Carbono Neutralidad y Desarrollo Bajo en Emisiones</td>
<td>• Situación Política en la región (inmigración o emigración)&lt;br&gt;• Mercados internacionales de servicios ambientales (especialmente carbono)</td>
</tr>
<tr>
<td>INDICADOR</td>
<td>MOTORES DE CAMBIO INTERNOS</td>
<td>MOTORES DE CAMBIO EXTERNOS</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| Población discapacitada (PD) | • Políticas internas relacionadas con esta población c.  
• Normas de trabajo y estándares c.  
• Ampliación de la cobertura de servicios en áreas con poco nivel de desarrollo (incluyendo mayor atención médica durante el embarazo en las mujeres) c. | • Avances en la medicina  
• Mejor tecnología |
| Uso de tanque séptico (VTS) | • Implementación del Proyecto de Alcantarillado Metropolitano y otros c.  
• Conciencia ambiental de la población a.  
• Implementación de una Política Nacional de Gestión de Recursos Hídricos b.  
• Capacidad institucional de los municipios h.c.  
• Apoyo político y capacidad de implementación del canon de vertidos (ver PHC arriba) que resultaría en la implementación de sistemas de alcantarillado y plantas de tratamiento por parte de la industria y el sector privado a. | • Nivel de cooperación para el desarrollo internacional c. |
| Densidad de población (DP) | • Políticas de urbanización c.  
• Número de hijos por mujer c.  
• Políticas de inmigración c. | • Situación política en la región c. |
| Sin área protegida (ASP) | • Política nacional de áreas protegidas a.  
• Política de Carbono Neutralidad y Desarrollo Bajo en Emisiones a.  
• Cambio de uso de suelo a.  
• Proceso de Urbanización del Valle Central a. | • Fondos internacionales para la compra de tierras p.  
• Desarrollo de Mercados internacionales para el pago de Servicios Ambientales (carbono, biodiversidad) |

Nota: a Ambiental; b Económico; c Político.
Un motor de cambio puede afectar varios indicadores, no obstante aquí se presenta al indicador que más afecta.

### 4.3 Escenarios

Un escenario no se construye de forma automática, o por medio de un logaritmo. Es más bien una línea narrativa a partir de la cual se hacen una serie de supuestos (detallado por indicador en el Cuadro 7) acerca del crecimiento de la población, la estructura de la economía, la orientación ideológica y otros. Estas historias son una interpretación acerca de los caminos futuros hacia el desarrollo
que puede seguir un país, una región, o el mundo en su conjunto. Es importante mencionar que a los escenarios no se les asignan probabilidades.

En el tema de cambio climático, el mejor ejemplo es la familia de escenarios desarrollados por el IPCC (2000), esta interpretación incluye ideas y supuestos acerca del crecimiento demográfico, la composición de la economía, la tecnología, las fuentes de energía y otros. El Instituto Ambiental de Estocolmo, SEI (por sus siglas en inglés) en otros casos ha desarrollado historias relacionadas con el nivel de aislamiento (murallas) o de integración de la economía mundial. Luego del desarrollo de la historia se establece el comportamiento de las variables principales. En este caso los escenarios construidos siguen los planteamientos anteriores.

El propósito de utilizar escenarios es revelar la dinámica de cambios y utilizarlos para alcanzar soluciones sostenibles a los retos identificados. Han sido utilizados en estrategias de gobierno porque permiten tener una idea del tipo de cosas que se puede esperar, es decir, permiten observar cuál sería el impacto en una determinada variable, debido a un cambio. Rojas y Echeverría (2002) utilizaron los escenarios para la estimación de la demanda Sectorial del agua en Centroamérica bajo tres escenarios futuros; “mundo convencional”, “barbarización” y “grandes transiciones”. La capacidad para iluminar asuntos y romper impasses los hace extremadamente efectivos en abrir nuevos horizontes y tomar decisiones estratégicas (OSD, 2011).

Por todas las razones anteriores en este estudio se plantean 3 escenarios para el país para el año 2030, que se describen brevemente en el Cuadro 6. Estas son simplemente las líneas narrativas que sirven como base para establecer reglas y parámetros de cambio para el cálculo de los valores de los indicadores (ver sección 4.4).

Cuadro 6. Descripción de Escenarios

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Descripción (líneas narrativa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal o tendencial. (N)</td>
<td>Consiste en una continuidad de las tendencias presentada por los indicadores en los últimos años disponibles. En este escenario no hay transformaciones drásticas que resulten en cambios en la vulnerabilidad de los cantones. El país avanza lentamente. La economía se mantiene relativamente estable y la participación de la agricultura constante. Igualmente se mantienen las dificultades asociadas a la ampliación de áreas protegidas, y los tratados comerciales no rinden los frutos esperados, más que ganancias modestas. En recursos hídricos, continúa la implementación de los cánones, más no se ven cambios significativos en la utilización de tanques sépticos.</td>
</tr>
<tr>
<td>Escenario</td>
<td>Descripción (líneas narrativa)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Alto desarrollo humano. (ADH)</td>
<td>Consiste en un futuro en donde el país avanza en el desarrollo humano en todos sus cantones con una gestión integrada de sus recursos hídricos que resulta en disminuciones en la vulnerabilidad. El país ha avanzado en el alcantarillado y tratamiento de sus aguas residuales, disminuyendo la contaminación de agua y aumentando la eficiencia en el uso de esta. La meta de llegar a ser una economía baja en emisiones está siendo alcanzada. Los motores de cambio en cuanto a políticas para la implementación de cánones hídricos, de ampliación de las áreas protegidas, población, nivel de actividad económica y finanzas públicas, se comporten todos favorablemente. Así se llegaría a un estado que se podría considerar ideal: donde tanto la economía como el ambiente, y en general la calidad de vida de los y las costarricenses. Esto resultaría también en la reducción de la vulnerabilidad en todo el país.</td>
</tr>
<tr>
<td>Retroceso (R)</td>
<td>El país no es capaz de adaptarse a los cambios requeridos y la situación política interna del país hace que los logros obtenidos en el pasado se vayan perdiendo. Retrocede la salud y la educación debido al deterioro de las finanzas públicas, entre otras cosas. Además, se polariza la sociedad y no hay acuerdos políticos importantes. No hay tratamiento de aguas residuales, continúa el uso de tanque séptico. En general, no hay avances en desarrollo humano.</td>
</tr>
</tbody>
</table>


4.4 Cálculo de Valores

El cálculo de la vulnerabilidad futura se realizó para los 81 cantones del país, en los tres escenarios y para los 7 indicadores detallados anteriormente. Adicionalmente se proyectó la vulnerabilidad futura para cuatro periodos de tiempo (2015-2020-2025-2030). Para el caso del IDH y el IPG se calculan los valores utilizando una proyección estadística, con base en los datos del Atlas Cantonal (PNUD y UCR, 2007) por medio de regresiones lineales para cada uno de los cantones. Con base en las series de tiempo presentadas en el atlas mencionado se utiliza una función tipo logarítmica para lograr un efecto de desaceleración cuando los valores de los índices se aproximan a uno. En el caso de los otros indicadores se hacen supuestos para cada escenario, con base en los criterios obtenidos durante la investigación, y que se presentan en el Cuadro 7. Dichos períodos se han seleccionado tomando en cuenta que hacer proyecciones socioeconómicas a más de 20 años plazo, no tiene mucho sentido.
en este contexto. Adicionalmente, es un plazo razonable para la identificación de aquellos cantones que requieren la mayor inversión en el tema y el análisis de políticas para la reducción de la vulnerabilidad. En todos los casos se utiliza la idea presentada en las “plantillas de análisis para la proyección de indicadores socioeconómicos” por el IMN (2005) en el estudio de vulnerabilidad de la zona noroeste de la Gran Área Metropolitana.

Para estimar cada indicador hacia el futuro se utiliza el enfoque de escenarios mencionado en la Sección 4.3. Es así como dependiendo del escenario cada variable va a tener un comportamiento distinto, como se muestra en el Cuadro 7. Estas reglas de cambio han sido desarrolladas por medio de criterio de experto y consultas mediante entrevistas personales7. En algunos casos se estimó la tendencia por medio de técnicas econométricas para calcular el comportamiento futuro del indicador. Por ejemplo, para el caso del Índice de Desarrollo Humano, se ensayaron varias formas funcionales y la logarítmica presentó las características más deseadas, por tanto, se ajusta una línea logarítmica del tipo y= m * ln(x) + b para cada cantón a los datos existentes. Luego se aplica esa expresión para hacer la proyección futura.

**Cuadro 7. Cálculo de los Indicadores según escenario.**

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Retroceso</th>
<th>Normal</th>
<th>Alto desarrollo humano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de Desarrollo Humano (IDH)</td>
<td>Se estanca el IDH en los valores de 2010. El avance que se ha observado hasta ahora se detiene.</td>
<td>El IDH aumenta conforme a la tendencia que se ha observado durante los últimos años. Mejora la educación, ingreso y salud. Se calculan líneas de regresión para cada cantón de la forma: IDH = m ln(x) + b. Se calcula el índice con base en la tendencia histórica</td>
<td>La tendencia observada en los últimos años mejora, es decir, que hay cambios favorables en los diferentes componentes del índice, superiores a la tendencia. Aumenta el coeficiente m en un 25% sobre la tendencia para cada cantón. Este valor hace que Escazú llegue a estar en primer lugar con un IDH de 0.95.</td>
</tr>
</tbody>
</table>

7Áreas Protegidas, Carlos Manuel Rodríguez, Fernando Bermúdez y Vicente Watson comunicación personal, vía telefónica, el 18 de mayo.
Tanques sépticos. Dr. Danner Mora. AyA. Comunicación personal, vía telefónica, el 19 de mayo.
Personas discapacitadas. Dra. Martha Gross. INI. UCR. Comunicación personal, vía telefónica, el 20 de mayo.
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Retroceso</th>
<th>Normal</th>
<th>Alto desarrollo humano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de Potenciación de Género (IPG)</td>
<td>Se estanca el IPG en los valores de 2010. El avance que se ha observado hasta ahora se detiene.</td>
<td>El IPG aumenta conforme a la tendencia que se ha observado durante los últimos años. Mejoran los componentes del índice.</td>
<td>La tendencia observada en los últimos años mejora. Dicha mejora supera la tendencia. Aumenta el coeficiente m en un 10% para cada cantón.</td>
</tr>
<tr>
<td>% de Viviendas con Tanque séptico (VTS)</td>
<td>Menos del 5% de las aguas residuales de Costa Rica reciben tratamiento, afectando las aguas superficiales y subterráneas.</td>
<td>Mejora la situación parcialmente y se logra implementar algunas de las soluciones.</td>
<td>Se implementa la Fase I del Alcantarillado Metropolitano para el tratamiento de las aguas residuales del GAM. El porcentaje de viviendas con tanque séptico es de un 38% en los cantones del proyecto Alcantarillado Metropolitano (ver sección 5.3). Se disminuye el promedio nacional de viviendas que usan tanque séptico a 68%.</td>
</tr>
<tr>
<td>Área sin zona protegida (ASP)</td>
<td>El país no declara más áreas protegidas, manteniendo el área protegida en un 25% del territorio nacional.</td>
<td>En este escenario se aumenta lentamente la declaración de algunas áreas protegidas.</td>
<td>El país reconoce la gran importancia de las áreas protegidas para disminuir la vulnerabilidad. Se logra la implementación de un 100% de la Propuesta GRUAS II. Esto significa que se agregan al sistema 712,000 ha bajo distintas clases de protección. Esto representa un total</td>
</tr>
<tr>
<td>Indicador</td>
<td>Retroceso</td>
<td>Normal</td>
<td>Alto desarrollo humano</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Potencial Hídrico per cápita (PHC)</td>
<td>Disminuye en un 30% la oferta de agua debido a la contaminación. -La población se comporta de acuerdo a la hipótesis alta del INEC</td>
<td>La cantidad de agua disponible disminuye en un 15%. La población se comporta según la hipótesis recomendada del INEC</td>
<td>La cantidad de agua disponible disminuye en un 5% al 2030. La población se comporta según hipótesis baja INEC</td>
</tr>
<tr>
<td>Población de discapacitados (PD)</td>
<td>Es difícil proyectar la cantidad de personas discapacitadas en el futuro, por cantón, por esta razón se asume que la población de discapacitados disminuye proporcionalmente de acuerdo al cambio registrado en el IDH, para cada uno de los escenarios</td>
<td>Es difícil proyectar la cantidad de personas discapacitadas en el futuro, por cantón, por esta razón se asume que la población de discapacitados disminuye proporcionalmente de acuerdo al cambio registrado en el IDH, para cada uno de los escenarios</td>
<td>Es difícil proyectar la cantidad de personas discapacitadas en el futuro, por cantón, por esta razón se asume que la población de discapacitados disminuye proporcionalmente de acuerdo al cambio registrado en el IDH, para cada uno de los escenarios</td>
</tr>
<tr>
<td>Densidad poblacional (DP)</td>
<td>Aumenta la densidad poblacional (hipótesis alta INEC, 2009 (es decir de 2,1 hijos por mujer))</td>
<td>Disminuye la tasa de crecimiento (hipótesis recomendada (1,9 hijos))</td>
<td>Se estabiliza la población en el 2020 (hipótesis baja (1,6 hijos))</td>
</tr>
</tbody>
</table>


La Figura 7 muestra un ejemplo de cómo se estima la tendencia para un cantón, que en este caso es San José. La ecuación en la figura es la representación matemática de la tendencia, en donde “x” se refiere al período de tiempo, mientras que “y” el valor estimado del indicador (en este caso el IDH). El $R^2$ representa la calidad del ajuste que tiene la estimación a los datos. El $R^2$ da una indicación acerca del ajuste que tiene la línea de tendencia con los datos observados. Un valor cercano a 1 indica que hay un buen ajuste. En este caso se puede notar el aumento constante que ha tenido este indicador desde el año 1992, cuando el índice tenía un valor de 0.736. En el 2008 ya presentaba un valor de 0.801. No obstante, el aumento en el valor del IDH es cada vez menor, presentando una tendencia de tipo logarítmica. Es decir, que en los primeros años del período se dio un aumento más rápido. En los últimos años el aumento se ha desacelerado y se mueve entre 0.800 y 0.820. Esta tendencia es similar para todos los cantones.
Figura 7. Ejemplo de Estimación de Tendencia en el Índice de Desarrollo Humano para el Cantón de San José.

Nota: la ecuación incluida en la figura representa la tendencia.

4.5 Análisis de Resultados

Con las proyecciones generadas se hace un análisis de la información con miras a obtener recomendaciones prácticas y aplicables que tiendan a mejorar la adaptación. Especialmente se pone atención a las diferencias entre cantones y a las poblaciones más vulnerables que requieran de un incremento en sus capacidades o la inversión pública. Esto incluirá posiblemente a la población discapacitada, las mujeres en condiciones de pobreza y productores agrícolas que no cuentan con capacidad de riego. Se hacen recomendaciones específicas para cada uno de estos grupos.
5 Análisis de Indicadores

En esta sección se hace un análisis de cada uno de los indicadores planteados, incluyendo su significado, comportamiento histórico y sostenibilidad. El comportamiento histórico se establece con base tanto a tendencias cuantitativas, cuando la información ha estado disponible, así como las opiniones de especialistas en los diferentes temas.

5.1 Caracterización de Indicadores seleccionados

Índice de Desarrollo Humano (IDH):

Significado: Desarrollo humano es el proceso de expansión de libertades efectivamente disfrutadas por las personas. El índice agrupa tres áreas del desarrollo humano: vida larga y saludable (medida por la esperanza de vida al nacer), educación (medida por la tasa de alfabetización de adultos y la tasa neta combinada de matriculación en primaria y secundaria) y nivel de vida digno (medida por el consumo eléctrico residencial por cliente) (PNUD, 2007).

Comportamiento histórico: De acuerdo al PNUD 2007, en el año 2000, el 26% de la población vivía en cantones con un IDH “medio alto” o “alto”, lo que para el 2005 aumentó hasta el 56,5%. En el 2000 solamente Montes de Oca y Escazú clasificaban en la categoría de “alto desarrollo humano” mientras que para el 2005 formaban parte de esta categoría los cantones de: Escazú, Santa Ana, Curridabat, Belén, Santo Domingo y Montes de Oca. Además se registraron mejoras en el nivel “bajo”, ya que en el 2000 había 6 cantones en esta categoría mientras que para el 2005 solamente se encontraba Talamanca.

En términos generales y con base en los datos del IDH, la tendencia actual de este índice es a mejorar, ya que aproximadamente aumenta un 1% por año. En la Figura 8 se puede observar el comportamiento del IDH durante los últimos años, así como la línea de tendencia estimada. Nótese el buen ajuste de la línea. Un análisis de los datos particulares para cada cantón refleja que la tendencia del IDH en la mayoría de los cantones es a mejorar. Para el 2008, Montes de Oca es el cantón que presenta el mejor valor (0.958) mientras que Talamanca, si bien es cierto ha experimentado un aumento en su IDH (0,586), es todavía el cantón con el más bajo nivel de desarrollo humano del país.

Sostenibilidad futura: Como parte de sus funciones PNUD calcula anualmente este índice por lo tanto se puede esperar que este indicador esté disponible en el futuro.
Figura 8. IDH: promedio cantonal desde 1993 hasta 2008

Nota: $R^2$ mide el ajuste que tiene la línea estimada a los datos reales. Un valor cercano a 1 indica que el ajuste es bueno.

Índice de Potenciación de Género (IPG):

Significado: El IPG se basa en las oportunidades de las mujeres y refleja la desigualdad con respecto a los hombres en relación con: participación política y poder de decisión, participación económica y poder de decisión y control de los recursos económicos (PNUD y UCR, 2007).

Comportamiento histórico: El IPG entre 2002 y 2008 muestra una tendencia al aumento, con un crecimiento de poco más del 10% en este período. Este aumento puede atribuirse principalmente a cambios en el poder de decisión sobre los recursos económicos, que es en última instancia, el componente de este índice que jerarquiza los cantones. Por el contrario, los otros dos componentes del índice presentan una leve disminución. A nivel de cantón este índice muestra una situación intermedia en la mayoría de los cantones (PNUD y UCR, 2007).

Además con base en la Figura 9 se pude afirmar que el comportamiento del índice, en los últimos años, se ha ido acercando cada vez más a la tendencia.

Sostenibilidad futura: La estimación de este índice la realiza el PNUD anualmente, lo cual permite afirmar que estará disponible para el futuro.
Densidad poblacional

Significado: Cantidad de personas por unidad de área, en habitantes por kilómetro cuadrado. La densidad poblacional es una herramienta que permite conocer mejor la distribución de la población en relación al área de un determinado cantón y su relación con las redes de transporte, actividades productivas y topografía (Pujol. R. 2010). Este indicador está relacionado inversamente con la población total, ya que el tamaño del territorio se mantiene constante.

Comportamiento histórico: la densidad de población sigue el comportamiento de la población total. Es así como la densidad, expresada en número de personas por kilómetro cuadrado, a nivel nacional ha venido aumentando (ver Figura 10), pasando de 17.4 personas por kilómetro cuadrado en 1950, a 89.3 en 2010. A nivel nacional la tasa global de fecundidad se ha desacelerado pasando de aproximadamente 7 hijos por mujer en 1961 a cerca de 2 hijos en el 2007 (INEC, 2008). Es así como en 1985 se alcanzó un máximo de 84,337 nacimientos, cifra que ha venido disminuyendo constantemente hasta llegar en 2010 a cerca de 71 mil nacimientos. Sin embargo, hay que notar que también que ese crecimiento es cada vez más lento.
Figura 10. Comportamiento histórico de la población en Costa Rica, desde 1950 hasta el 2010

Fuente: Elaboración propia, con base en el Censo de Población INEC 2000.

Sostenibilidad futura: La población se mide con detalle por medio del Censo Nacional de Población que se hace cada 10 años aproximadamente. Sin embargo, el INEC continuamente actualiza esa información e incluso realiza proyecciones de población hacia el futuro. Por esta razón es posible contar con buenos estimados de este indicador en el futuro.

Viviendas con tanque séptico

Significado: Este indicador mide el porcentaje de viviendas que utilizan el tanque séptico como medio de eliminación de excretas. Es relevante debido a que se relaciona con la contaminación de fuentes de aguas subterráneas (Retana et al, 2011). En Costa Rica esta práctica es generalizada y en el largo plazo puede producir contaminación de las fuentes de agua.

Comportamiento histórico: El uso de tanques sépticos en Costa Rica sigue la misma tendencia del proceso de urbanización, debido a que la gran mayoría de las viviendas utilizan este sistema. Según el Programa Estado de la Nación (2010) “sólo un 26% de la población está cubierto por alcantarillado sanitario, el 71% posee tanque séptico y un 3% usa otros sistemas (especialmente pozo negro o letrina). De la proporción que cuenta con alcantarillado sanitario solo un 3,6% está conectado a una planta de tratamiento en operación”. Se puede mencionar que los acuíferos de Barva y Colima (del río Virilla), específicamente el acuífero de Colima Superior, están bajo un riesgo ambiental elevado (contaminación de aguas de recarga con agroquímicos), comprometiendo el
suministro actual y el futuro de alrededor de un millón de personas (Programa Estado de la Nación, 2010).

El proyecto “Mejoramiento Ambiental del Área Metropolitana de San José” (descrito en la sección 5.3) representa una alternativa de desarrollo que tiene como objetivo mejorar las condiciones de tratamiento de las aguas residuales del Gran Área Metropolitana, importante de considerar en el presente estudio.

Debido a que existe una relación directa entre el comportamiento creciente de la densidad poblacional y el uso de tanques séptico en el país, el comportamiento histórico del uso de tanques sépticos es similar al comportamiento de la población presentado anteriormente.

**Sostenibilidad futura:** La fuente de esta información es el Censo de Población y Vivienda del INEC que se realiza cada 10 años aproximadamente.

**Área sin zonas protegida**

Significado: Cantidad de áreas del cantón que no tiene áreas protegidas (incluyendo Parques Nacionales y otras designaciones). La cantidad de área protegida, y por lo tanto de bosques tiene un impacto sobre los recursos hídricos (Retana *et al*, 2011).

**Comportamiento histórico:** Según los datos del SINAC (2011) en el 2010 el área protegida existente era de 12610 km² lo cual representa un 25% del territorio nacional. Esta cifra incluye diferentes tipos de área protegida, incluyendo parques nacionales, refugios de vida silvestre, reservas forestales, y otros. Esta cifra es alta cuando se compara con otros países. Por ejemplo, considerando las categorías de la I a la VI de la UICN⁸, el Salvador tenía en el 2006 un 1% de su territorio designado a áreas silvestres protegidas y México un 5,2%; mientras que Costa Rica presentaba un 21% (UNEP-WCMC, 2006).

De acuerdo al especialista en áreas protegidas, Fernando Bermúdez (comunicación personal vía telefónica, mayo 2011) la mayoría de Áreas protegidas del país se establecieron en los años setenta y ochentas. Mientras que en los noventas y 2000 es muy poco lo que se ha hecho en cuanto al establecimiento de nuevas áreas de protección. Hay solo casos aislados, como por ejemplo la declaración reciente de los Montes Submarinos de la Isla del Coco. No obstante, el proyecto GRÚAS II, hace una propuesta a nivel nacional donde determina el camino para la futura ampliación de los parques nacionales de Costa Rica.

---

⁸ Categoría I: Protección estricta (Reserva Natural Estricta y Área natural silvestre), Categoría II: Conservación y protección del ecosistema (Parque Nacional); Categoría III: Conservación de los rasgos naturales (Monumento natural); Categoría IV: Conservación mediante manejo activo (Área de manejo de hábitats / especies); Categoría V: Conservación de paisajes terrestres y marinos y recreación. Categoría VI: Uso sostenible de los recursos naturales.
Como se puede detallar en el Cuadro 8 la provincia que cuenta con más áreas silvestres protegidas es Limón, seguida de Puntarenas, mientras que Heredia es la que menos áreas protegidas registra.

**Cuadro 8. Área silvestre protegida (km2) por provincia**

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alajuela</td>
<td>1,537.95</td>
</tr>
<tr>
<td>Cartago</td>
<td>1,416.83</td>
</tr>
<tr>
<td>Guanacaste</td>
<td>1,637.68</td>
</tr>
<tr>
<td>Heredia</td>
<td>924.66</td>
</tr>
<tr>
<td>Limón</td>
<td>3,523.38</td>
</tr>
<tr>
<td>Puntarenas</td>
<td>2,361.65</td>
</tr>
<tr>
<td>San José</td>
<td>1,207.82</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>12,610.00</strong></td>
</tr>
</tbody>
</table>

Fuente: SINAC (2011)

Como se ha mencionado anteriormente, la evolución de este indicador a través del tiempo ha tenido picos (70’s y 80’s) donde se establecieron o crearon muchas áreas protegidas en el país, llegando a abarcar un 25% del territorio nacional. Dicho porcentaje que representa una cuarta parte del total del área de Costa Rica es significativo, lo cual, ha dificultado la creación de nuevas áreas protegidas en los últimos años.

Claramente para obtener el indicador “Zonas sin Áreas Protegidas”, se toma en cuenta la información anteriormente detallada y se calcula su inverso, es decir, la diferencia entre dichas áreas y el total del territorio nacional (por cantones).

**Sostenibilidad futura:** Mapa de zonas protegidas del MINAET. Existe información completa y actualizada generada por parte del SINAC. Se actualiza con frecuencia.

**Potencial Hídrico per-cápita**

**Significado:** Cantidad de agua disponible por persona, medida en litro por hora por año.

**Comportamiento histórico:** La administración de los recursos hídricos ha tomado relevancia en los últimos años en el ámbito ambiental y de desarrollo humano, convirtiéndose en algunos casos en fuentes de conflictos debido a su disponibilidad, aprovechamiento y contaminación. La falta de legislación nueva en esta materia y las contradicciones entre los mensajes de las diferentes instituciones (Senara, Minaet y el Instituto Costarricense de Acueductos y Alcantarillados) encargadas de velar por el manejo del recurso hídrico generan, sobre todo en las zonas costeras, conflictos de intereses (Programa Estado de la Nación, 2010).
Según IMTA (2008) es posible asegurar que el potencial hídrico per cápita ha disminuido, principalmente por dos razones; aumento de la población y aumento de la contaminación doméstica e industrial. Por ejemplo, la contaminación del río Tárcoles ha aumentado significativamente en los últimos años, aumentando la vulnerabilidad de los acuíferos que alimentan a los centros de población (Echeverría, et al, 2008).

Este indicador tiene dos componentes; cantidad de personas que habitan en el cantón y cantidad de agua disponible. Como ya se mencionó, debido a la creciente contaminación de los recursos hídricos ha habido una clara tendencia a la disminución del potencial hídrico per cápita. Este indicador se comporta de forma inversa al crecimiento de la población lo que permite observar su comportamiento histórico, de forma tal, que si la densidad poblacional ha aumentado y la disponibilidad de agua ha disminuido (principalmente por contaminación), es posible asegurar que el comportamiento histórico del potencial hídrico per cápita ha sido hacia la disminución.

Sostenibilidad futura: La Dirección de Aguas tiene como responsabilidad actualizar este balance en el futuro; por otra parte INEC realiza estimaciones de la población de cada cantón.

**Población de discapacitados**

**Significado:** Segmento de la población que padece ceguera, sordera, amputación, parálisis o trastorno mental (Retana et al, 2011).

**Comportamiento histórico:** Según conversaciones telefónicas realizadas en mayo 2011 con la especialista Martha Gross de la UCR, la población de discapacitados del país se ha concentrado históricamente en zonas rurales debido principalmente a dos razones; la carencia de atención médica adecuada y regular durante los embarazos y en los primeros años de vida de los niños. Por tanto, la deteccción de discapacidades y su debido tratamiento es de menor calidad en estas áreas. En la actualidad los cantones prioritarios de atención del Gobierno son Pococi, Limón, Siquirres, Sarapiqui, Coto Brus, Corredores, Upala, Buenos Aires, Matina, Golfito, Osa, Talamanca, La Cruz, Los Chiles y Parrita (INEC, 2000) en donde hay una población discapacitada de cerca de 50 mil personas en total.

Sostenibilidad futura: Este indicador se estima en el Censo de Población y Vivienda (INEC 2000). Además, INEC y CNREE hacen estimaciones actualizadas.
5.2 Relación de los indicadores seleccionados con el sector hídrico y el cambio climático.

Cada uno de los indicadores planteados en la sección anterior se relaciona con los recursos hídricos y el cambio climático de forma diferente (ver Cuadro 9). Uno de los criterios para seleccionar los indicadores fue precisamente que tuvieran relación con el recurso hídrico y el cambio climático. Esta relación es independiente del periodo de tiempo, ya que, en el tiempo lo que va a cambiar son los valores de los indicadores (ver Sección 5).

La justificación de la selección de los indicadores fue discutida en la Sección 3.1 dejando en claro su relevancia para el estudio. Cada uno de los indicadores seleccionado refleja de una forma u otra los cambios en el sector hídrico ocasionados por el cambio climático. La información del cuadro complementa la que presenta Retana et al (2011).

Cuadro 9. Indicadores seleccionados y su relación con el recurso hídrico, el desarrollo humano y el cambio climático.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Relación con el recurso hídrico</th>
<th>Relación con el desarrollo humano</th>
<th>Relación con cambio climático</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de Desarrollo Humano</td>
<td>Los recursos hídricos potencian el desarrollo humano brindando agua para la población, la generación de energía y producción agrícola. El acceso al agua permite mejorar la salud, y generar ingresos.</td>
<td>Mide tres aspectos del desarrollo humano para conformar un índice agregado: vida larga y saludable, educación e ingresos.</td>
<td>La vulnerabilidad al cambio climático está directamente relacionada con el nivel de desarrollo. Un mayor desarrollo humano permite tomar medidas de adaptación y las acciones necesarias ante el cambio climático.</td>
</tr>
<tr>
<td>Índice de Potenciación de Género</td>
<td>Cada género tiene su forma de relacionarse con el agua. En algunos países las mujeres forman el grueso de trabajadores del sector agrícola. En otros las niñas son las responsables de llevar agua al hogar.</td>
<td>El desarrollo humano no puede ocurrir en condiciones de desigualdad entre los géneros.</td>
<td>Las mujeres han sido identificadas no solo como una población vulnerable al cambio climático sino como promotoras de cambio. Además, históricamente las mujeres están al cuidado de una población más vulnerable (niños y adultos mayores).</td>
</tr>
<tr>
<td>Vivienda con Tanque séptico</td>
<td>El abuso y mal uso de estos sistemas puede llevar a la contaminación de fuentes subterráneas de agua potable.</td>
<td>Fuentes de agua contaminadas no favorecen el desarrollo humano. Aumenta la incidencia de enfermedades</td>
<td>Las inundaciones elevan la tabla de agua del suelo y la exponen a la contaminación fecal. El agua de rebalse se puede contaminar afectando la salud.</td>
</tr>
<tr>
<td>Indicador</td>
<td>Relación con el recurso hídrico</td>
<td>Relación con el desarrollo humano</td>
<td>Relación con cambio climático</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Área sin zona protegida</td>
<td>La cobertura boscosa es una medida de protección de las zonas de recarga acuífera.</td>
<td>El desarrollo ambiental, que incluye áreas protegidas, es paralelo al desarrollo humano. Aporta servicios, paisaje, equilibrio, protección.</td>
<td>Las áreas boscosas son sumideros de carbono y ayudan a atenuar los efectos de extremos del clima.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La existencia de Áreas Protegidas permite el ejercicio de las libertades individuales ya que garantiza entre otras cosas la cantidad y calidad del agua, para uso doméstico, los ecosistemas y para la producción.</td>
<td>Las áreas protegidas tienen una serie de beneficios hidrológicos. Pueden reducir el impacto de eventos extremos debido a su efecto retardador de crecidas, así como el mantenimiento de la infiltración natural del suelo, promover la recarga de los acuíferos y otros beneficios.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>También permite la generación de información para la ciencia y brinda oportunidades para la recreación.</td>
<td></td>
</tr>
<tr>
<td>Potencial Hídrico per cápita</td>
<td>Indicador directo de la cantidad de agua al servicio de las personas.</td>
<td>El agua, su disponibilidad y calidad, afecta directamente el desarrollo humano. Permite abastecer con agua a la población lo que tiene impactos evidentes sobre la salud. También genera bienestar material en la producción (riego agrícola, generación de hidroelectricidad, turismo).</td>
<td>Sequías o inundaciones producto de eventos extremos afectan directamente la disponibilidad de agua. Aquellos cantones con menor cantidad de agua por persona tendrán claramente una mayor vulnerabilidad ante cambios en la precipitación.</td>
</tr>
<tr>
<td>Indicador</td>
<td>Relación con el recurso hídrico</td>
<td>Relación con el desarrollo humano</td>
<td>Relación con cambio climático</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Población de discapacitados</td>
<td>Particularmente dependientes de servicios y cuidados relacionados con agua de buena calidad.</td>
<td>Los países desarrollados se caracterizan por programas efectivos de atención de estos grupos.</td>
<td>Principalmente en lo referente a la movilización o evacuación ante eventos extremos abruptos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Además, la calidad de los servicios de salud, incluyendo durante el embarazo, disminuye significativamente la población discapacitada.</td>
<td>Si hay mayor población discapacitada la vulnerabilidad será mayor. El costo de movilización y atención es mayor.</td>
</tr>
<tr>
<td>Densidad poblacional</td>
<td>Indicador directo que permite estimar la demanda de servicios públicos, incluyendo agua y saneamiento.</td>
<td>El aumento en la densidad poblacional puede reducir la disponibilidad de servicios a la población.</td>
<td>Si la densidad de población aumenta, aumenta la vulnerabilidad ante el cambio climático debido a que una recarga en los servicios y la capacidad de respuesta.</td>
</tr>
</tbody>
</table>

Fuente: tomado de Retana et al y modificado por Echeverría, 2011

El cuadro anterior permite tener una idea de la relación que tienen los indicadores seleccionados con el cambio climático. Aclara la dirección en que se mueve cada indicador ante los efectos del cambio climático. Como se observa en el cuadro los indicadores seleccionados están muy relacionados con los recursos hídricos, el desarrollo humano, y determinan la vulnerabilidad ante el cambio climático. Algunos, como el índice de desarrollo humano (IDH) y el potencial hídrico per-cápita (IPC) se relacionan de forma inversa: mayor el indicador, menor vulnerabilidad. Otros, como la densidad poblacional y la cantidad de discapacitados están relacionado de forma directa: mayor el indicador, mayor la vulnerabilidad.
6 Proyección de Indicadores

En esta Sección se presentan los resultados de la proyección de los indicadores para los años 2010, 2015, 2020, 2025 y 2030, para cada cantón y para cada escenario. El Anexo 1 presenta a manera de ejemplo el detalle de la proyección para cada cantón del escenario de Alto Desarrollo (AD) para el año 2030. En esta sección se presentarán los valores proyectados por indicador pero en forma agregada, es decir, como promedio de los cantones, puntualizando casos especiales. Lo anterior con el fin de facilitar el manejo de la información. Es relevante recordar que las proyecciones se hacen siguiendo los criterios desarrollados en Cuadro 5, Cuadro 6, y Cuadro 7.

6.1 Índice de Desarrollo Humano

El desarrollo humano depende de muchos factores que captura por medio de tres dimensiones: ingresos, salud y educación. Hacia el futuro, es de esperar, que las diferencias más grandes entre cantones ocurran en el tema de ingresos, debido a que la educación y salud presentan a nivel nacional una muy buena cobertura. No obstante, hay riesgos, que podrían hacer que las tres retrocedan. Por ejemplo, es posible imaginar una situación en que la seguridad social al menos no mantiene el paso en cuanto a los avances logrados en las últimas décadas. Las finanzas y estructura misma del esquema de seguridad social que ha prevalecido en el país. Recientes publicaciones en los medios noticiosos han revelado que las finanzas de la Caja Costarricense del Seguro Social, así como de los programas de invalidez, vejez y muerte no cuentan con la solidez deseada. Igualmente, la educación podría sufrir, si no se resuelven asuntos importantes como el déficit fiscal y aumentan los ingresos del gobierno.

Por otra parte, si mejora la situación de la economía mundial, y el país es capaz de poner orden en sus finanzas, es posible que tanto la salud, como la educación y los ingresos de la población mejoren.

La proyección futura del IDH se basa en una regresión econométrica de la serie de tiempo para cada cantón. La misma incorpora las tendencias observadas en los últimos años, e incorpora de manera indirecta los motores de cambio internos y externos. Como se discutió las finanzas del Estado, y la política comercial del país son algunos de los elementos que definirán el nivel del índice de desarrollo humano en el futuro. La diferencia entre los escenarios radica en el nivel de avance que pueda presentar el indicador.

Motores externos pueden tener un impacto importante en este caso. Por ejemplo el precio de los combustibles es de suma importancia en el caso de Costa Rica, que importa el 100% de estos. Aumentos en los precios de los combustibles, si bien es cierto pueden disminuir las emisiones nacionales, pueden tener un efecto nefasto sobre el ingreso familiar: el precio de los combustibles tiene un
efecto multiplicador ya que la energía es un componente del costo de todos los productos. Más aún su efecto es muy regresivo: afectará más a las familias de bajos ingresos.

Por otra parte, la cooperación para el desarrollo internacional que recibe el país podría mejorar algunos índices. No obstante, se considera que este efecto sería marginal.

En la Figura 11 se presentan los resultados promedio de todos los cantones de acuerdo a los tres escenarios planteados9 para este indicador. En el escenario de retroceso (R) se estanca el valor del IDH en 0.78, mientras que si continúa la tendencia histórica este valor llegaría a ubicarse un poco arriba de 0.80. En el escenario de desarrollo humano por el contrario el IDH promedio es de 0.86, aproximadamente. A nivel de cantones, en este caso el cantón que queda mejor ubicado en el 2030 es Santa Ana, seguido de Belén, Montes de Oca y San Isidro y Santo Domingo, respectivamente. En el 2010, se encontraban los mismos cantones, con la excepción de Escazú, que estaba en lugar de San Isidro. En las posiciones más bajas y con el menor nivel de desarrollo humano, de acuerdo al IDH en el 2030 se localizan Talamanca, Matina, Alajuelita, Buenos Aires y La Cruz, respectivamente, que también ocupaban dichos puestos en el 2010.


---

9 Ver Anexo 3 para los resultados por cantón para el año 2030 escenario AD, a manera de ejemplo.
6.2 Índice de Potenciación de Género

Aunque históricamente el IPG presenta una marcada tendencia a la mejoría en prácticamente la totalidad de los cantones, la misma no necesariamente va a continuar en el futuro. Deben consolidarse los logros alcanzados por las mujeres en el país. Los factores detrás de estos cambios, sin embargo, son complejos, y dependen de múltiples factores, algunos culturales, otros sociales y económicos. Políticas de igualdad de salarios, o de igual en representación de puestos altos de las empresas, que afecten la cantidad de ingresos de las mujeres.

El IPG al 2030 en el escenario AD y N aumenta a valores mayores a 0.9, además se nota de acuerdo a la tendencia que a pesar de que aumentan, lo hacen en menor grado cada vez; esto es consistente a la forma funcional utilizada (logarítmica) y también con la tendencia observada en el comportamiento histórico. En el escenario de retroceso el valor del IPG se mantiene constante en 0,63 (ver Figura 12).

Para el 2010 los cantones que presentaban el mejor IPG son Montes de Oca, Escazú, Santa Ana, Belén y San Rafael respectivamente, mientras que los peores valores son obtenidos por León Cortés, Montes de Oro, Pococí, Matina y Santa Cruz. Esta situación varía un poco bajo el escenario AD dónde por ejemplo Belén pasó del lugar 4 al lugar 15 mientras que Orotina pasó del lugar 10 al 2. Es difícil especular del porqué esto ocurre y de las diferencias entre cantones sin embargo estos resultados reflejan la tendencia observada. El IPG, se proyectó para cada cantón según su tendencia, observada entre el 2002 y el 2008.

En este campo tanto las políticas públicas en cuanto a capacitación, apoyo a pequeñas empresas familiares, apoyo a la mujer jefa de hogar y otras podrán tener un efecto en que se mejore el índice. Sin embargo, este es un tema complejo que tiene muchas aristas. En principio la tendencia revela que este índice viene aumentando con el tiempo en todos los cantones. Aquí la discusión se centra sobre si en el futuro el indicador va a continuar su tendencia, o esta va a ser más rápida. Y es aquí donde los motores de cambio presentados van a hacer la diferencia. El trabajo de organizaciones como el INAMU va a ser muy importante en lograr la potenciación de las libertades individuales de ambos géneros, y especialmente de las mujeres. Programas que faciliten a la mujer tener acceso a trabajos dignos y con ingresos razonables pueden también tender igualar la situación de hombres y mujeres.

Al igual que en el caso del IDH se realizó una regresión lineal para estimar el IPG para cada uno de los cantones de forma individual.
6.3 Porcentaje de Viviendas con Tanque séptico

El motor de cambio principal, como se mencionó es el proyecto de Alcantarillado Metropolitano, que se espera cambiaría los porcentajes de utilización de tanques sépticos. Sin embargo, muchos cantones quedan fuera de este proyecto y aún así es posible esperar algunas mejoras debido al nivel de conciencia ambiental que adquiera la población en los próximos años. Aquellos cantones cuyas poblaciones sean más sensibles a los daños ambientales estarán más dispuestas a invertir en proyectos que tiendan a disminuir la proporción de viviendas que utilizan tanques sépticos. Un motor de cambio adicional es la política nacional de recursos hídricos, y el apoyo político para continuar con la implementación del canon de vertidos. La implementación de este canon puede resultar en la adopción de sistemas de tratamiento de aguas residuales, y la consecuente disminución en el porcentaje de uso de tanques sépticos.

El cambio esperado en este indicador, sin embargo, se atribuye principalmente al proyecto de Mejoramiento Ambiental del Alcantarillado Metropolitano implementado por AYA que incorpora los cantones de: San José, Desamparados, Goicoechea, Alajuelita, Vázquez de Coronado, Tibás, Moravia, Montes de Oca y Curridabat de la provincia de San José y La Unión de Cartago (AYA, 2011).

El proyecto “Mejoramiento Ambiental del Área Metropolitana de San José” tiene como objetivo la rehabilitación y extensión del sistema de alcantarillado sanitario y la construcción de una planta de tratamiento de aguas residuales, lo cual
ampliará a un 65%, es decir cerca de un millón habitantes la cobertura. Disminuyendo de un 20,1% a un 0,5%, las aguas de alcantarillado sanitario sin tratamiento. Adicionalmente, las aguas residuales con tratamiento por medio de una planta pasarán de un 3,5% a un 26,8%.

“La primera fase de este proyecto tiene como fin sanear la cuenca del Río Tárcoles, con el que se inicia la recolección y tratamiento de aguas residuales de la GAM con la que luego se debe implementar la II Etapa de Alcantarillado Metropolitano que cubrirá a una población de 1,6 millones de habitantes, a la que se deben de ir agregando la Ciudad de Heredia, Alajuela y demás ciudades en las cabeceras de los cantones que descargan sus aguas en el Río Tárcoles” (AyA, 2011). Esta segunda fase, sin embargo, no estaría concluida para el año 2030.

En un escenario de alto desarrollo se espera una reducción significativa en el porcentaje de viviendas que utilizan tanque séptico para disponer de sus aguas residuales domésticas. Esto incluye la implementación de proyectos en los cantones ubicados en cuencas como la del río Tempisque. No obstante se debe considerar la posibilidad de que el proyecto no se logre implementar en su totalidad, ya que requiere de diversos insumos, y la experiencia del país en cuanto a proyectos de gran magnitud ha demostrado ser lenta. Por estas razones se plantea el escenario Normal en el cual se espera que haya avances aislados por parte de ciudades que tomen iniciativas individuales (ver Figura 13).

No obstante, en la actualidad los municipios están apenas adquiriendo las capacidades para poder implementar proyectos de obras públicas, además el tema de construcción de carreteras absorberá la mayoría de los esfuerzos en los próximos años. Por esto se considera que existe la posibilidad de que muchos de estos proyectos se estanquen y no estén concluidos al año 2030.

En el escenario de retroceso se mantendrían los porcentajes como estaban en el año 2000. Este escenario considera que el número de personas en el GAM aumenta pero que la proporción de uso de tanques sépticos se mantiene constante.
6.4 Área sin zona protegida

Según consultas telefónicas realizadas en mayo 2011 a especialistas en el tema de áreas protegidas, incluyendo al Vicepresidente Regional de Conservación Internacional y Exministro de Ambiente de Costa Rica Carlos Manuel Rodríguez, y otros reconocidos especialistas nacionales, Fernando Bermúdez y Vicente Watson, la tendencia de este indicador es a la consolidación de las áreas protegidas actuales y no al aumento de áreas. Por ejemplo, una gran parte del área del Parque Nacional de Baulas está en manos privadas y requiere grandes cantidades de recursos para la adquisición de terrenos que ya han sido declarados como Parque Nacional. No obstante, existe una propuesta nacional conocida como Grúas II que plantea la ampliación de parques nacionales, corredores biológicos, humedales, zonas de cobertura forestal y demás (SINAC 2009).

Los motores de cambio que afectan a este indicador a nivel interno incluyen la política nacional en cuanto a la designación de nuevas APs y uso del suelo, así como lo relacionado con la meta de llegar a ser una economía baja en emisiones. Desde el punto de vista externo, claramente los fondos para la compra de tierras para parques nacionales tendrá un efecto en la cantidad de áreas protegidas en los distintos cantones. Muchos de estos fondos son utilizados para la realización de estudios de base que eventualmente resultan en la declaratoria de áreas protegidas. Pueden afectar igualmente la disponibilidad...
que tenga el país de ampliar áreas existentes. Finalmente, y tal vez más importante el desarrollo de mercados internacionales para el pago de los servicios ambientales de las áreas protegidas. Hay negociaciones en el seno de la Convención de Diversidad Biológica para implementar esquemas financieros novedosos que podrían resultar en fondos para Costa Rica en el corto y el mediano plazo. Estos acontecimientos podrían facilitar la designación de nuevas áreas brindando los beneficios económicos asociados al cambio en el uso del suelo.

En el escenario de AD se asume que estos motores, o fuerzas, de cambio se mueven favorablemente y aumentan las áreas protegidas de acuerdo a la propuesta de GRUAS II, en un poco más de setecientas mil hectáreas, incluyendo todas las diferentes categorías de conservación. Esto sería equivalente a cerca de un 40% del área del país como se observa en la Figura 14. Este escenario es factible si la economía nacional continúa valorando los recursos naturales y su conservación, así como alcanzando las metas ambientales (incluyendo la carbono neutralidad) y reduciendo la dependencia de las actividades tradicionales como la agricultura. Más bien se orienta hacia los servicios, con énfasis en la producción verde, economía baja en emisiones, economía del conocimiento y desarrollo de tecnologías. Instituciones como INBIO y SINAC aumentan su aporte a la economía nacional y al mismo tiempo fortalecen sus vínculos con agencias bilaterales y multilaterales que apoyan sus esfuerzos.

El mayor aumento en kilómetros de áreas protegidas ocurriría en los cantones de Santa Cruz, San Carlos, Upala y Nicoya (escenario Alto Desarrollo). Cada uno aportando más de 500 km² en nuevas áreas protegidas. Cantones como Puntarenas, Los Chiles, Guatuso y Aguirre aportan por su parte más de 250 km². En este escenario más de 25 cantones se mantienen con la misma cantidad de AP, destacan los casos de Flores, San Pablo, Santo Domingo y Belén que no cuenta actualmente con áreas protegidas ni tampoco se proponen en GRUAS II. Además declarar AP en estos cantones no es factible debido al alto precio de la tierra.

En el escenario Normal las condiciones no son tan favorables, y se supone que se logra implementar únicamente un 25% de la propuesta GRUAS II, lo que hace que agreguen al sistema unas 178 mil hectáreas. Por otra parte, bajo el escenario de retroceso se mantienen las áreas protegidas que existen en la actualidad. Es decir, si bien no se logra consolidar nuevas AP, sí se mantienen las actuales, lo cual representa resultados de igual forma positivos ya que la cobertura actual de AP del país abarca un 25%. 

59
6.5 Densidad poblacional

Bajo los diferentes escenarios, la densidad poblacional cambia con base en las hipótesis planteadas en el Cuadro 7, considerando cambios en el número de hijos por mujer (INEC, 2002). Este es el principal motor de cambio y está determinado a su vez por actitudes culturales, nutrición, fertilidad, la distribución de edad de la población, acceso a contraceptivos, políticas gubernamentales y el ingreso. Por otro lado están la inmigración y la emigración, motivadas por aspectos que hacen atractivo un lugar con respecto a otro, incluyendo oportunidades, ingresos esperados, tasa de delincuencia, existencia de conflictos bélicos y otros.

La poca diferencia entre los tres escenarios se debe a que las proyecciones realizadas por el INEC (2002) son hechas para el año 2100. Entonces, el año 2030 se encuentra muy temprano en la proyección. Aún así, el poco aumento se explica por el hecho de que la población en Costa Rica se está estabilizando, como se detalla en la sección 4.1, por lo que la densidad poblacional crece a un ritmo menor cada vez.

El cantón más denso es San José, con más de 9 mil personas por km², seguido por Tibás, Alajuelita, Curridabat y Goicoechea. Otros cantones con alta densidad son Montes de Oca, Santa Ana, Flores, Desamparados. Los cantones con menos densidad incluyen Turrubares, Osa, Talamanca y La Cruz.
No existen razones concretas para esperar que este orden varíe y los cantones de la Gran Área Metropolitana seguirán siendo los más densos en el mediano plazo. Por otra parte ciudades como Puntarenas y Limón probablemente sigan manteniendo una densidad de entre 60 y 70 habitantes por km2.

Entre escenarios no es posible encontrar diferencias importantes, como se observa en la Figura 15 y todos los escenarios en el 2030 presentan valores cercanos a los 110 habitantes por kilómetro cuadrado. En conclusión, se puede decir que este indicador aumenta sin importar el escenario y la diferencia no es significativa, principalmente en los primeros tres quinquenios. Esto debido a que el impacto que puedan tener las fuerzas motoras es limitado, según se desprende del análisis realizado por el INEC, en la elaboración de estos escenarios. La razón de la poca diferencia entre las hipótesis de crecimiento de la población se debe a que el período de tiempo es corto, y los cambios en las tendencias de población ocurren muy gradualmente. Aún así sería posible explorar en un futuro, y con mayor nivel de detalle el impacto que la inmigración pueda tener sobre la densidad de la población. Hay que reconocer sin embargo las dificultades asociadas a la predicción de movimientos migratorios en la región.

**Figura 15. Proyecciones de Densidad Poblacional**

![Figura 15. Proyecciones de Densidad Poblacional](image)

Fuente: elaboración propia, 2011.
6.6 Potencial Hídrico per Cápita

Debido al leve aumento de la población pero sobre todo a una reducción esperada en la calidad del agua disponible, las proyecciones de los tres escenarios reflejan la disminución del potencial hídrico por persona. Esto ocurre debido a que no se espera bajo ninguno de los escenarios que disminuya la contaminación de los cuerpos de agua en el futuro cercano. Es así como la disponibilidad de agua se disminuye en un 5%, 15% y 30% en los escenarios de Alto Desarrollo Humano, Normal y de Retroceso, respectivamente. Este efecto, combinado con los cambios esperados en la población, se observa en la Figura 16. Los motores de cambio principales en este caso son los que tienen que ver con la contaminación de los recursos hídricos, que a su vez dependen del crecimiento de la economía, la actitud de las personas con respecto a la contaminación y la existencia de políticas públicas para resolverla. En la actualidad el énfasis está en la disminución de las fuentes puntuales de contaminación, sin embargo, también hay que considerar fuentes no puntuales.

Figura 16. Proyecciones de Potencial Hídrico per cápita

Para cada escenario se hacen supuestos diferentes en cuanto a estos motores de cambio, que se resumen en los porcentajes mencionados arriba. En el escenario más optimista se pasa de un potencial hídrico per cápita de 23,021 m$^3$ a 18,426 m$^3$, mientras que en el escenario pesimista el valor para el 2030 es de menos de 13,000 m$^3$ por persona. Por lo mencionado antes, el crecimiento de la población aumenta y hay una disminución de la calidad del agua en todos los
casos. Esto resulta en que en todos los escenarios se da una reducción relativa del potencial hídrico per cápita. No obstante, las diferencias entre cantones son muy grandes, y hay cantones como Turrialba que aún en el peor de los casos siempre van a tener mucho más disponibilidad de agua, que otros como Alajuelita.

Entre los cantones que sobresalen por tener un bajo potencial se encuentran Alajuelita, San José, Tibás, Curridabat y Desamparados que son precisamente aquellos que cuentan con un área total pequeña (que determina la oferta de agua) y una gran cantidad de personas. Por ejemplo Curridabat, tiene únicamente 16 km2, pero tiene 72,000 habitantes.

Es así como los cantones mencionados tienen un potencial hídrico por persona muy reducido, que oscila entre los 200 y los 400 metros cúbicos. Por el contrario, los que tienen mayor disponibilidad son Turrialba, Talamanca, Golfito, Turrubares y Osa, con más de 130,000 m³ disponibles por persona. Esto se explica por la relación entre precipitación, área, y población. Por ejemplo, Osa es un cantón no solo con alta precipitación sino una gran área (1,891 km2) y reducida cantidad de habitantes (20,000).

En este caso las políticas ambientales como la de carbono neutralidad (que puede resultar en un incremento significativo de áreas boscosas), también tendrán un efecto sobre la cantidad y calidad del agua, subterránea y superficial. Por ejemplo, mayores áreas boscosas significan mayor recarga a los acuíferos, y reducciones en los eventos hidrológicos extremos, como inundaciones. Por esta razón, la política mencionada puede tener un impacto importante sobre la vulnerabilidad del sector de recursos hídricos ante el cambio climático en Costa Rica. En un escenario de Alto Desarrollo Humano es de esperar entonces que el país tenga avances significativos en la recuperación de áreas boscosas. Estas incluyen no solo áreas públicas, sino también áreas privadas dedicadas al pago por servicios ambientales. Esto variaría el porcentaje de agua “aprovechable” y haría que una fracción mayor, 95% en este caso, fuera considerado como susceptible de aprovechamiento.

Esta política puede afectar no solo el indicador de porcentaje de área sin “zonas protegidas” sino también el de disponibilidad hídrica. Esto a través del coeficiente de contaminación, utilizado para cada uno de los escenarios. En un escenario AD la existencia de mayor cantidad de áreas con cubierta boscosa implicarían un aumento de la cantidad de agua disponible para la población debido a que podrían infiltrarse al subsuelo antes de ser contaminadas con diversas sustancias: aceites, combustibles, detergentes, efluentes industriales y otras. Lo opuesto también puede ocurrir: si la cubierta boscosa se reduce o se mantiene constante y la contaminación de los cuerpos de agua continúa, la cantidad de agua disponible va a reducirse significativamente. Esto es lo que contempla el escenario R, una situación en la que no solo aumenta la cantidad de personas, sino que disminuye la cantidad de agua disponible, con una calidad adecuada por las razones mencionadas.
A esto se debe agregar el tema de los residuos sólidos, y en especial aquellos que son potencialmente dañinos para los acuíferos. Y aunque la amenaza es puntual, puede tener efectos negativos en la calidad del agua y por lo tanto en la cantidad disponible para los diferentes usuarios. El IMTA (2008) cita en el Balance Hídrico para Costa Rica varias fuentes de contaminación potencial, incluyendo desechos industriales, y domésticos. Estos desechos pueden contener contaminantes como plomo, níquel, cadmio, que se encuentran en equipos de cómputo, electrodomésticos, y otros. Un mal manejo de estos residuos perfectamente puede contribuir a la contaminación de acuíferos y la reducción de la cantidad de agua disponible.

6.7 Población Discapacitada

El porcentaje de población discapacitada puede reducirse por medio de la atención médica durante el embarazo, los controles prenatales, así como el cuidado durante los primeros meses de vida. Es así como esta variable va a estar muy ligada a los avances en desarrollo humano, en el sentido amplio, de los cantones. En aquellos en que se logre mejorar los servicios de salud, los ingresos y la educación, posiblemente lograrán una reducción en el porcentaje de población discapacitada.

En las proyecciones se observa, como para el nivel nacional se logran reducciones moderadas. Esto se debe a que la variable está ligada al cambio porcentual en el IDH, cambios que son muy pequeños año con año. Esta reducción sin embargo, puede tener un efecto importante en la reducción de la vulnerabilidad.

En general como se puede observar en la Figura 17 las proyecciones indican que este indicador no va a empeorar bajo los escenarios planteados, siendo el peor de los casos el escenario de retroceso donde se espera que las condiciones actuales se mantuvieran constantes. Mientras que bajo los escenarios de AD y N, se espera una disminución significativa del porcentaje de población discapacitada.

En este caso las fuerzas motoras incluyen normas y reglamentos de trabajo en cuanto al uso de equipos de protección, el mejor uso de agroquímicos, y la ampliación de la cobertura de los servicios de salud, especialmente para la atención durante el embarazo. En el escenario ADH habría mejoras pero serían lentas y sus resultados no se verían en el corto ni mediano plazo. Las diferencias con el escenario N son muy pocas, debido a que se asume una variación porcentual igual a la del IDH.
6.8 Índice de Vulnerabilidad

El índice de vulnerabilidad se calcula en varios pasos. Primero, se transforman los valores de los indicadores a una escala entre 0 y 1, en donde el cantón que tiene un 0 es aquel menos vulnerable de acuerdo a ese indicador. El que tiene un 1 es el más vulnerable, y los demás se distribuyen de una forma proporcional. Una vez que están los valores de todos los indicadores individuales entre 0 y 1 estos se suman, para generar el Índice de Vulnerabilidad Agregado. En este paso no se asignan pesos o importancia relativa a los indicadores, todos tienen el mismo peso. Finalmente, se aplica el mismo procedimiento de normalización a este índice integrado, para obtener valores en una escala entre 0 y 1.

Al nivel agregado (ver Figura 18), tanto en los escenarios Normal (N) y Alto Desarrollo Humano (AD) la vulnerabilidad muestra una tendencia a disminuir hacia el año 2030. Esto se debe a aumentos en el IDH y el IPG, así como mejoras por ejemplo en la implementación del alcantarillado y tratamiento de aguas en el Valle Central.
El cantón que tiene menor vulnerabilidad al año 2030, en el escenario AD (que es el considerado como más ilustrativo por el autor) es el cantón de Heredia. Esto se debe a un alto nivel de desarrollo humano y potenciación de género, la existencia de áreas protegidas, una moderada densidad de población y pocas personas con discapacidad. La otra cara de la moneda es Montes de Oro de Puntarenas, que tiene bajo IDH y bajo IPG; además, tiene un alto porcentaje de utilización de tanques sépticos y un mayor porcentaje de individuos con algún tipo de discapacidad.

Los cantones con mayor vulnerabilidad futura incluyen además Matina, Alajuelita, y León Cortés. Es interesante ver como Talamanca, aunque con un valor muy bajo en desarrollo humano, está en la categoría de baja vulnerabilidad, debido a un alto potencial hídrico, áreas protegidas, bajo porcentaje de población discapacitada, y poca densidad de población.
7 Análisis de Resultados

Este trabajo inició con una revisión del concepto de vulnerabilidad al cambio climático y de los factores que la determinan. Y aunque no existe un consenso unánime acerca de cuáles son estos factores hay algunos que se repiten constantemente en la literatura. Estos incluyen la dependencia de la economía del sector agrícola, pobreza, infraestructura deficiente, y ausencia de servicios básicos. No obstante, no hay información confiable que asigne pesos relativos a estos factores, es decir, la influencia que tienen en determinar la vulnerabilidad de una población. Intuitivamente, un mayor nivel de desarrollo humano prepararía mejor a la sociedad en su conjunto a lidiar con los impactos del cambio climático, en el sector de recursos hídricos. Igualmente, aspectos como la densidad de la población y la disponibilidad de agua tendrán un efecto. La magnitud de este efecto no es posible calcularla en la actualidad, y no hay datos que permitan hacer un análisis estadístico de los factores que determinan la vulnerabilidad. En ausencia de ese tipo de análisis se ha recurrido a interpretaciones de tipo teórico, que vinculan causalmente la vulnerabilidad con los distintos factores considerados.

Es así como ha surgido una corriente de estudio que con base en varios indicadores, intenta construir “índices de vulnerabilidad” para describir o predecir que tan vulnerable es una población, en comparación con otra, ante un impacto climático.

Por todo lo anterior resulta claro que los resultados que se obtengan van a estar determinados por los supuestos que se hagan para construir el índice. Y esto incluye tanto los supuestos para hacer proyecciones de los indicadores a futuro, como los supuestos subyacentes a la construcción del índice mismo. Por ejemplo, únicamente al decidir cuántos indicadores utilizar ya se les está dando automáticamente un peso a cada uno. Si se utilizaran 10 cada uno tendría un décimo de impacto en el total, pero si fueran sólo 3 entonces sería un tercio.

En el trabajo de Retana et al (2011) se trabajó con 14 indicadores; es decir que cada uno tenía un peso similar de 1/14 a la hora de estimar el índice de vulnerabilidad (IV). En este caso se utilizaron 7 lo que en efecto le da a cada uno un impacto de 1/7 del IV. Muchas de las diferencias observadas en los resultados serán explicadas por este hecho. Otras diferencias estarán explicadas por la selección de los indicadores, como se verá adelante.

El tratar a todos los indicadores por igual, lo que en efecto es darles el mismo peso a todos, y haber reducido a 7 el total de indicadores permitió mayor facilidad en el análisis. No obstante, el número reducido hace que el peso de cada uno de los indicadores seleccionados sea mayor (un séptimo en éste estudio) y tengan mayor influencia en generar un cambio en vulnerabilidad.
Hay buenas razones para pensar que el IDH pueda reflejar la vulnerabilidad porque claramente la educación, la salud y los ingresos permiten tener acceso a herramientas para reducirla. No obstante, en el sector de recursos hídricos hay otras variables importantes que deben ser tomadas en cuenta y que han sido incluidas en este estudio. Son variables que a veces no presentan el mismo comportamiento o distribución espacial que el IDH. Específicamente, se utilizó una variable muy importante en el contexto de la vulnerabilidad al cambio climático del sector hídrico que es la densidad de población. Al mismo tiempo se mantuvo la variable de la disponibilidad hídrica per cápita que se ve afectada también por la densidad de población.

La densidad de población se comporta de manera inversa al IDH en cuanto a su impacto en la vulnerabilidad. Una mayor densidad de población implica una mayor vulnerabilidad, mientras que un mayor desarrollo humano resulta en una menor vulnerabilidad. Hay cantones como Talamanc a y Upala que tienen una baja densidad de población lo que disminuye su vulnerabilidad. No obstante, al mismo tiempo tienen un bajo IDH lo que aumenta su vulnerabilidad. Aquí la pregunta es ¿cuánto peso darle a cada indicador?

Como se indicó el haber introducido la densidad de población en el análisis modifica el perfil de vulnerabilidad. Esto debido a que cantones alejados, como por ejemplo los Chiles y Osa, que cuentan con pocos habitantes en relación a su territorio y una gran cantidad de agua disponible resultan con perfiles de vulnerabilidad bajos en el futuro, como se comentó anteriormente. Esto se debe a que aunque en la actualidad tienen un bajo IDH e IPG, se espera que aumentarán en el futuro y se acercarán a los valores que presentan otros cantones con mayor nivel de desarrollo humano. Al reducirse la brecha en desarrollo humano y potenciación de género entre cantones entonces las diferencias en cuanto a densidad de población o disponibilidad hídrica se hacen más significativas. Lo mismo ocurre con el indicador de discapacitados, debido a que su rango de variación es poco, menos de un punto porcentual entre los cantones con mayor y menor porcentaje, su efecto se diluye ante los otros.

La importancia de la selección de indicadores se manifiesta al comparar los resultados de vulnerabilidad actual (Retana, 2011) y vulnerabilidad futura (Echeverría, 2011) para el caso del cantón de Cañas. Este cantón presenta una alta vulnerabilidad actual debido a que es un gran usuario de agua para la agricultura; al eliminar ese indicador el cantón deja de ser tan vulnerable. Esta diferencia radica en la visión de vulnerabilidad por la interpretación que se puede dar del indicador de consumo de agua para agricultura. El enfoque de vulnerabilidad futura utilizado aquí, por el contrario, considera a Cañas como un cantón poco vulnerable debido a que cuenta con una gran capacidad de almacenamiento de agua.

El caso de Los Chiles sirve para mostrar el efecto de algunas de otras variables. En Retana et al (2011) este cantón es uno de los más vulnerables, debido a su bajo IDH, y correspondiente bajo nivel en las variables correlacionadas mientras
que en este estudio y bajo el escenario de AD, se ubica entre los cantones menos vulnerables. Esto se debe a dos efectos que se combinan de forma simultánea. Por un lado, al ser un cantón que parte de un bajo IDH tiene mayor oportunidad de aumento en el futuro en cuanto a la salud, los ingresos y la educación. De acuerdo a las proyecciones realizadas los Chiles en 20 años va a haberse acercado y convergido a los valores que presentan otros cantones que en el presente cuentan con un buen nivel de desarrollo humano (debido a que estos últimos avanzan más lentamente). El otro efecto se relaciona con la introducción de la variable densidad de población que afecta directamente a la disponibilidad hídrica por persona. La baja densidad de población de los Chiles y consecuentemente gran potencial hídrico, junto con un cierre de la brecha del IDH, hacen que mejore su posición significativamente con respecto a los resultados de vulnerabilidad actual.

Por todas estas razones es normal que haya cambios en las posiciones de los cantones entre los resultados de vulnerabilidad actual y vulnerabilidad futura. Es así como cantones que tuvieron un valor nota muy bajo o muy alto en uno o dos de los indicadores se movieron bastante en la escala. Esto es una limitante para hacer comparaciones con la vulnerabilidad actual ya que la utilización de diferentes indicadores refleja visiones o interpretaciones diferentes de lo que es la vulnerabilidad. Los supuestos de los escenarios se aplican a todos los cantones de forma similar, por lo tanto, no existe un cambio estructural de la economía y la sociedad del país, sino que las diferencias se deben más a diferencias en la visión de vulnerabilidad dada por la selección de indicadores.

Aún así, hay algunos cantones que se repiten como los más vulnerables en ambos casos y es en estos en donde deberían dirigirse los esfuerzos nacionales de adaptación al cambio climático. Los cantones de Matina, Limón, Guácimo y Pococi en la vertiente del Caribe, Coto Brus y Corredores en la zona fronteriza con Panamá, Parrita en el Pacífico Central y Nicoya en Guanacaste son considerados en ambos casos entre los más vulnerables.

7.1 Distribución Geográfica de la Vulnerabilidad

La vulnerabilidad futura ante el cambio climático en el sector de recursos hídricos muestra patrones geográficos bien definidos (en la Figura 19 se muestran los resultados para el escenario de Alto Desarrollo). Para el análisis de la información se toma como referencia las regiones climáticas de Costa Rica definidas por el IMN: Valle Central, Pacífico Norte, Pacífico Central, Pacífico Sur, Zona Norte y Vertiente del Caribe. Los resultados se reflejan por medio de colores que indican diferentes grados de vulnerabilidad (rojo oscuro simboliza los cantones más vulnerables, rojo para los cantones con vulnerabilidad media-alta, anaranjado representa los cantones con vulnerabilidad media, el amarillo oscuro aquellos con una vulnerabilidad media-baja y finalmente el color amarillo claro para aquellos cantones menos vulnerables).
En primer lugar destaca el **Valle Central**, en donde aspectos como una limitada disponibilidad hídrica, alta densidad de población y la ausencia de áreas protegidas hacen que varios cantones sean vulnerables a los impactos del cambio climático. Alajuelita, San José y Desamparados tienen una vulnerabilidad alta, pese a contar con buenos ingresos, salud y educación. Lo mismo ocurre con los cantones de Belén y Flores. En la categoría de medio alto se encuentran Aserrí y Tibás. En este sentido es importante enfatizar la importancia que juega la contaminación del agua en la disponibilidad hídrica ya que reduce la oferta de agua disponible para los diferentes usos, que hacia el futuro se espera que aumente en todos los cantones, pero principalmente en el Valle Central.

Hay cantones que ilustran la tendencia futura esperada para el Valle Central hacia el 2030. Por ejemplo, Escazú y Curridabat son cantones que desde el punto de vista del desarrollo humano se ubican entre los primeros lugares. No obstante, tienen prácticamente una ausencia total de áreas protegidas, un uso generalizado de tanques sépticos y una muy baja disponibilidad hídrica por persona, lo cual los ubica en una categoría media de vulnerabilidad. A esto habría que sumarle una tendencia al aumento en la densidad de población y la contaminación de las fuentes de agua de estos cantones lo que agravará la situación.

Montes de Oca, por su parte, es un cantón con alto IDH y es el tercero menos vulnerable en el año 2030. Esto se debe a que es el cantón con mayor potenciación de género (según el IPG), un alto IDH, reducido uso de tanque sépticos y muy poca población discapacitada.
La Zona Norte, aunque cuenta con bajos ingresos, tiene baja densidad de población, una gran cantidad de agua disponible por persona y no hay tantos problemas de contaminación del agua, muchos de los cantones son de baja o media baja vulnerabilidad. Esto incluye algunos cantones fronterizos, y alejados de la Capital, y que no necesariamente serán tan vulnerables en el futuro, de acuerdo a la visión planteada en este estudio. Esto contrasta con el estudio de vulnerabilidad actual (Retana et al, 2011) que clasifica a estos cantones en la Zona Norte como de alta vulnerabilidad. Esto se debe a que en el estudio de vulnerabilidad actual, como se mencionó anteriormente tiene 6 indicadores, de un total de 14, que se mueven en la misma dirección del IDH; es decir que el IDH tenía mucho más peso que en el caso de la vulnerabilidad futura. Además con el paso del tiempo se espera que se cierre la brecha en el IDH entre cantones lo que reduce las diferencias. Adicionalmente, en la Zona Norte la densidad de población es menor lo que también resulta en una mayor disponibilidad de agua por persona.

Estos cantones usualmente tienen además economías diversificadas y flexibles, que históricamente se han adaptado a múltiples condiciones adversas. Este es el caso de Upala, La Cruz, Los Chiles y San Carlos. Estos cantones aunque tienen un bajo IDH e IPG, debido a carencias en ingresos, educación y salud, y
pocos avances en el tema de género, ven su vulnerabilidad reducida en el futuro debido a un gran potencial hídrico por persona, baja densidad de población y la existencia de áreas protegidas. Lo mismo ocurre con cantones como Osa y Golfito del Pacífico Sur, que si bien es cierto tienen bajos niveles de IDH e IPG en la actualidad, estos aumentan en el futuro. Esto se combina con una baja densidad de población y gran disponibilidad de agua por persona. Esta zona además se caracteriza por un porcentaje importante de áreas protegidas que reduce su vulnerabilidad.

En la Vertiente del Caribe los cantones costeros tienen vulnerabilidad alta o media alta. Esto significa una baja capacidad de respuesta ante los impactos del cambio climático sobre los recursos hídricos, medida por el índice integrado. La excepción la constituyen los cantones de Siquirres y Talamanca. En el caso de Siquirres la diferencia con respecto a Limón, Matina, Guácimo y Pococi, que tienen una vulnerabilidad alta, se atribuye a la gran diferencia favorable que tiene en cuanto al IDH y el IPG. En el caso de Talamanca la diferencia se debe a su baja densidad de población, el potencial hídrico por persona es amplio, así como un alto porcentaje de áreas protegidas y una proporción baja de personas discapacitadas. A pesar de que de acuerdo con las proyecciones realizadas Talamanca será el cantón con el menor IDH en el año 2030, la diferencia con los cantones con mejor IDH no será tan grande como en 2010 (ya que los cantones que se encuentran en una base menor aumentan a una tasa mayor). Además, indicadores como la densidad de población, la disponibilidad de agua y las áreas protegidas muestran valores favorables lo que hace que Talamanca tenga una vulnerabilidad baja.

En el Pacífico Norte, la vulnerabilidad es alta para los cantones de la Cuenca del Río Tempisque en Guanacaste que incluyen Santa Cruz, Nicoya y Carrillo. Esto se debe a un IDH relativamente bajo, poca disponibilidad hídrica, poco porcentaje de áreas protegidas y un porcentaje alto de población discapacitada. Algo similar ocurre en Hojancha y Nandayure. En el Pacífico Central la vulnerabilidad se proyecta como media, con la excepción del cantón de Parrita, que tiene un alto porcentaje en el uso de tanque séptico, una baja disponibilidad hídrica y pocas áreas protegidas.

7.2 Comparación de Escenarios

La Figura 20 y la Figura 21 muestran la vulnerabilidad futura ante el cambio climático en el sector hídrico de los diferentes cantones bajo un escenario de retroceso y un escenario normal respectivamente. Como se mencionó el utilizar un enfoque de escenarios permite reducir la incertidumbre asociada con las proyecciones futuras.

Sin embargo, los resultados muestran que entre los escenarios analizados hay pocos cambios, principalmente debido a que el periodo de tiempo del análisis es corto (20 años). Esto resulta en que algunos de los indicadores no varían
mucho, debido a que no transcurre el tiempo suficiente para que se manifiesten los cambios entre escenarios. Por ejemplo, las proyecciones realizadas por el INEC para 3 escenarios se mantienen muy cerca hasta el 2030 y se nota una diferencia hasta el 2050. En otros casos, como por ejemplo, el del indicador relacionado con Áreas Protegidas el porcentaje de nuevas áreas distribuido entre todos los cantones es relativamente poco, debido a que el país ya cuenta con un 25% de su territorio bajo áreas protegidas. Es decir inicia desde una línea base alta.

**Figura 20. Vulnerabilidad en el Año 2030, Escenario Retroceso.**

![Mapa de Vulnerabilidad en el Año 2030, Escenario Retroceso](image)

Fuente IMN(2011)
Los resultados de vulnerabilidad pueden también interpretarse a nivel de provincia. Por ejemplo, en la es consistente con los resultados del análisis de Retana (2011). En ambos casos (vulnerabilidad actual y futura) Limón es la provincia que tiene la mayor vulnerabilidad mientras que Cartago la menor. De forma similar también Heredia se ubica en un punto intermedio y San José como la segunda provincia menos vulnerable.
Figura 22. Índice de Vulnerabilidad Promedio por Provincia para el 2030.

Este análisis puede hacerse también con base en la subdivisión en tres componentes que hacen Retana et al (2011): infraestructura, servicios y condición humana (ver Cuadro 2 al principio). Los resultados para el escenario AD en el año 2030, a nivel de provincia se muestran el Cuadro 10. En este caso se incluyen en Condición Humana los índices de desarrollo humano, potenciación de género y personas discapacitadas. En Infraestructura se encuentran tanques sépticos y densidad de población. Finalmente, en el componente de Servicios, se incluyen zonas protegidas y potencial hídrico por persona.

Los resultados muestran como en condición humana Limón y Guanacaste son los que presentan la mayor vulnerabilidad, mientras que Heredia, San José y Cartago se ubican en las mejores posiciones entre todas las provincias. Alajuela y Puntarenas se ubican en una posición intermedia. Desde el punto de vista de la infraestructura la situación se invierte debido a que en este caso los indicadores de infraestructura tienen que ver con la densidad de la población y el uso de tanques sépticos. Finalmente, desde el punto de vista de los servicios se observa poca variación entre las provincias. Desde esta perspectiva Limón es menos vulnerable debido a su alto potencial hídrico y alto porcentaje de áreas protegidas. Este análisis a escala de provincia hay que interpretarlo...
cuidadosamente, debido a que puede enmascarar diferencias entre cantones. Por ejemplo, San José tiene poca vulnerabilidad desde el punto de vista de la condición humana, mientras que desde el punto de vista de los servicios y la infraestructura es más vulnerable debido a una mayor densidad de población. Este no necesariamente es el caso para todos los cantones de la Provincia. Igual ocurre en la provincia de Limón, como se mencionó antes ya que hay cantones muy diferentes entre sí en cuanto a lo que a vulnerabilidad se refiere.

Este análisis es muy dependiente de los indicadores escogidos, y de la agrupación que se haga de estos en los diferentes componentes. Por esto es necesario ahondar en el futuro en este tema, ya que la inclusión de indicadores adicionales podría ayudar a generar resultados más robustos.

Cuadro 10. Componentes del Índice de Vulnerabilidad por Provincia.

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Condición Humana</th>
<th>Infraestructura</th>
<th>Servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heredia</td>
<td>0.27</td>
<td>0.54</td>
<td>0.86</td>
</tr>
<tr>
<td>San José</td>
<td>0.38</td>
<td>0.43</td>
<td>0.77</td>
</tr>
<tr>
<td>Cartago</td>
<td>0.38</td>
<td>0.45</td>
<td>0.68</td>
</tr>
<tr>
<td>Alajuela</td>
<td>0.45</td>
<td>0.43</td>
<td>0.72</td>
</tr>
<tr>
<td>Puntarenas</td>
<td>0.47</td>
<td>0.39</td>
<td>0.69</td>
</tr>
<tr>
<td>Guanacaste</td>
<td>0.52</td>
<td>0.35</td>
<td>0.71</td>
</tr>
<tr>
<td>Limón</td>
<td>0.61</td>
<td>0.36</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Nota: mayor valor, más vulnerabilidad.

7.4 Método de análisis y limitantes

La metodología planteada es un enfoque que pretende simplificar dinámicas muy complejas, que incluyen temas económicos, sociales, culturales y políticos. Sin embargo, constituye una herramienta que permite priorizar e identificar de forma relativa a los cantones según su vulnerabilidad, para el sector de recursos hídricos al cambio climático. Se puede considerar una visión particular de la vulnerabilidad futura.

La limitante principal encontrada es la carencia de datos sólidos que permitan establecer relaciones cuantitativas entre variables como el IDH y la vulnerabilidad, basados en observaciones reales. Es así como es necesario recurrir a modelos teóricos que representen las condiciones de la realidad, lo cual no siempre es factible.

Los indicadores presentados pueden mejorarse en el futuro, lo cual permitiría aplicar o mejorar la misma metodología, y con mayor detalle. Por ejemplo, podría incorporarse un factor de contaminación de agua estimado para cada cantón individualmente y afinar la información con respecto al uso de tanques sépticos.
Hay indicadores que después de un análisis más profundo han revelado su debilidad. Por ejemplo utilizar como indicador el porcentaje de viviendas que usan tanque séptico puede hacer que algunos cantones con muy poca población, pero con uso generalizado de este tipo de tanques como medio para disponer de las aguas residuales domésticas, parezcan muy vulnerables. Del modo contrario, poblaciones muy numerosas pero con un porcentaje moderado de uso de estos tanques, pueden parecer menos vulnerables que las primeras.

Por otra parte y en el caso del potencial hídrico, sería más realista incorporar al análisis la infraestructura existente para transportar agua entre cuencas. Algunos cantones serían favorecidos debido a que aunque tengan poca cantidad de agua propia, cuentan con la infraestructura requerida para traer el agua de otras cuencas (el caso de San Pedro, Curridabat, San José, Montes de Oca). Un indicador adicional podría ser el nivel de interconexión entre sistemas de abastecimiento de agua o el número de fuentes de abastecimiento con que cuenta cada cantón.

Otro aspecto que hay que tomar en cuenta es que la unidad espacial utilizada ya que el cantón, no necesariamente es tan relevante para la gestión de los recursos hídricos. La cuenca hidrográfica es una unidad de análisis mucho más relevante y útil que el cantón, desde el punto de vista de la gestión integrada de los recursos hídricos y por lo tanto para calcular la vulnerabilidad del sector ante el cambio climático. Por otra parte, hay que considerar que indicadores como la disponibilidad hídrica por persona pueden dar una imagen incorrecta de la vulnerabilidad debido a que no consideran la infraestructura existente para transportar el agua de un lugar a otro. Es así como en los cantones de la Gran Área Metropolitana se utiliza agua captada en otros lugares, por ejemplo, en Orosi.

Hay muchos aspectos que se pueden mejorar en cuanto a los indicadores escogidos para la estimación de la vulnerabilidad actual y futura. Siempre existirá un sesgo de partida a la hora de seleccionar los indicadores, que imprimirá en el análisis la visión de la persona que realiza el trabajo. El simple hecho de determinar cuantos indicadores utilizar y que peso darle a cada uno ya introduce cierta subjetividad en el análisis. Por ejemplo, el no asignar de forma explícita un peso (o valor relativo a cada uno) ya es un juicio de valor que dice que todos tienen la misma importancia. Aún así, este enfoque es mejor la alternativa, ya que asignar peso a los indicadores sería todavía más subjetivo y dirigiría e introduciría un sesgo mayor relacionado con la visión de vulnerabilidad futura del quien realice el análisis.

A nivel cantonal puede mejorarse el detalle utilizado. Sería posible, en lugar de utilizar valores constantes a nivel nacional (por ejemplo para la contaminación del agua) utilizar valores específicos para cada cantón. Igualmente, sería posible agregar mayor detalle en el tema de población, tomando en cuenta los movimientos entre cantones.
Finalmente, y aunque este análisis se ha realizado por cantón, hay que tomar en cuenta también que hay "sectores" o poblaciones que por sus características son más vulnerables. Esto incluye, como ya se ha mencionado a la mujer en condición de pobreza y la población discapacitada. En ambos casos ayudas dirigidas a estos sectores particulares podrá en el futuro reducir su vulnerabilidad.

Comparaciones con el trabajo de vulnerabilidad actual realizado por el IMN (Retana et al 2011) son posibles pero teniendo cuidado en la interpretación que se haga. Esto se debe a que el juego de indicadores utilizado en cada caso es distinto, lo que genera diferentes visiones de vulnerabilidad. Sin embargo, ambos trabajos son útiles para indicar la posición relativa de los cantones, en donde se establece su ubicación en términos de la vulnerabilidad. El patrón de vulnerabilidad futura es diferente al patrón actual. La vulnerabilidad futura se concentra en Guanacaste y se acentúa en el occidente del Valle Central, el Pacífico Central y la Vertiente del Caribe. Cantones que mantienen el mismo comportamiento en ambos estudios incluyen Pococí, Guácimo y Matina en el Caribe; Corredores en el Sur; y Parrita, Turrubares y León Cortés en el Pacífico Central.
8 Conclusiones y Recomendaciones

La vulnerabilidad futura ante el cambio climático en Costa Rica puede reducirse si se toman acciones que resulten en mejoras de la infraestructura, los servicios y la condición de las personas. Algunas acciones que pueden colaborar en reducir la vulnerabilidad incluyen una mayor aplicación del conocimiento y conciencia acerca de las interacciones entre el clima y la sociedad; mejor tecnología y herramientas para la planificación, educación y salud, y prevención del riesgo. Si el país logra además dirigir recursos hacia aquellos cantones con mayor índice de vulnerabilidad presente y futura, el país podrá reducir su vulnerabilidad ante los efectos del cambio climático en el sector de recursos hídricos.

De forma opuesta, es posible también que la vulnerabilidad aumente, sino se toman las medidas necesarias y el país se estanca económica y socialmente. Hay que notar que algunos de los cantones más vulnerables, y mencionados arriba, son los que tradicionalmente han sufrido de altos niveles de pobreza, marginación y han estado fuera del alcance de los beneficios del Estado.

De acuerdo a este análisis los indicadores que definen la vulnerabilidad son aquellos que registran los mayores cambios entre cantones. Por ejemplo, el IDH y el IPG presentan diferencias entre cantones, pero estas nunca son tan marcadas como las diferencias que se encuentran en el potencial hídrico per cápita y en el porcentaje de áreas protegidas. Este último indicador tiene mucha relevancia debido a los beneficios que estas áreas brindan al ciclo hidrológico.

En última instancia, lo que es importante reconocer es que la vulnerabilidad futura estará determinada por las acciones que tome el país en el presente para reducirla. Pueden tomarse acciones de adaptación para que ante una amenaza dada, que el país no puede controlar, los impactos sobre la población sean los menores posibles. Es así como hay inversiones que reducen o preparan al país ante el cambio climático en el futuro. Estas incluyen en primera instancia todas aquellas que tienden a incrementar el desarrollo humano: inversiones en educación, salud y en bienestar social en general. En este sentido Costa Rica ha logrado desarrollar una filosofía económica que brinda prioridad a la educación, la salud y a un sistema de seguridad social que permite reducciones en la vulnerabilidad ante el cambio climático.

Igualmente, en el sector de recursos hídricos deben tomarse una serie de acciones tendientes a asegurar la oferta de agua para la población y los diferentes usos. Tales como reducir la contaminación de las fuentes de agua subterránea, aumentar la capacidad de almacenamiento, aumentar el grado de interconexión de los sistemas y aún aumentar la eficiencia en el uso del agua de todos los sectores. Igualmente, el aumento de la cobertura boscosa en áreas de recarga acuífera.
Como se mencionó arriba, uno de los factores más importantes que influyen en las diferencias de la vulnerabilidad entre cantones es la disponibilidad hídrica por persona. Este indicador refleja varias situaciones de forma simultánea, incluyendo el incremento de la población y la contaminación del agua. Esta es una razón adicional para darle prioridad a la reducción de fuentes puntuales y difusas de contaminación del agua. Este tema es particularmente importante en el Valle Central, en donde la alta concentración de la población y el crecimiento del sector industrial en el futuro pueden aumentar la presión sobre este recurso.

No obstante, los logros en desarrollo humano deben ser consolidados durante los próximos años y las finanzas públicas deben mejorar para poder apoyar al sector educación y el sector salud que deben ser una prioridad en este contexto. Es aquí en donde el país enfrenta un gran reto para los próximos años ya que de no tomar medidas correctivas estos avances se pueden perder. Si las finanzas del sistema de seguridad social no mejoran y el Gobierno no logra reducir el déficit fiscal, es de esperarse que ocurra un deterioro de la educación y en la salud así como en los ingresos de la población.

Como se indicó antes, el enfoque espacial es útil pero limitado. Debe hacerse énfasis también en las poblaciones vulnerables, que están distribuidas en todo el país. Hacia estas, que incluyen la población discapacitada, la población dependiente y la mujer en condición de pobreza, deberían estar dirigidas la mayor parte de los recursos para mejorar el nivel de adaptación y reducir la vulnerabilidad al cambio climático.

Aunque no se asignan probabilidades para la ocurrencia de los escenarios, este consultor considera que en el año 2030 es muy posible que ocurra un escenario de Alto Desarrollo Humano siempre y cuando se toman las decisiones necesarias y el modelo de desarrollo sostenible sea fortalecido. El escenario de retroceso, aunque factible, debido a que es una visión pesimista del futuro y que está en contra de las tendencias observadas durante los últimos años, no se considera probable. Como resultado de este trabajo, se visualiza la sociedad costarricense en el 2030 como una que ha logrado avanzar por el camino del desarrollo sostenible, y que ha invertido en ampliar su sistema de áreas protegidas, al mismo tiempo que logra la protección de los recursos hídricos. El país logra los acuerdos necesarios para sanear sus finanzas y la economía logra recuperarse y estabilizarse. Esto es lo que aquí se ha llamado un Escenario de Alto Desarrollo Humano. Es posible, sin embargo, que algunas de las metas planteadas en este escenario no se materialicen en su totalidad.

Y en ambos escenarios se observan tendencias similares. Primero, en cuanto al IDH e IPG se nota que estos siguen siendo mayores en el Valle Central. No obstante, el Valle Central presenta algunos de los factores de vulnerabilidad más importantes: alta densidad de población, bajo potencial hídrico por persona, contaminación del agua y uso generalizado de tanques sépticos. Por el contrario, muchos cantones alejados y con bajo IDH tienen poca población, menor contaminación de las fuentes por el uso de tanques sépticos. Ya en el
Oeste del Valle Central existen limitaciones a la urbanización debido a la falta de capacidad para llevar agua a algunas zonas altas.

En este contexto, es vital aumentar la capacidad de adaptación al cambio climático del país y especialmente en aquellos cantones considerados como más vulnerables. Las medidas de adaptación para el sector de recursos hídricos, reducirán la vulnerabilidad y aumentarán la resiliencia ante los cambios esperados que afecten el sector. Algunas medidas que ayudarán a reducir la vulnerabilidad incluyen:

- Diversificación de la producción, investigación y extensión agrícola. El sector agrícola es especialmente vulnerable a los cambios en la precipitación. Por eso y debido a la incertidumbre asociada con los cambios en los patrones de lluvia, la diversificación con productos y variedades agrícolas resistentes a la sequía y cambios en la temperatura es una medida adecuada.
- Interconexión de sistemas de agua. Los sistemas de agua interconectados permitirán mantener la oferta de agua cuando algún sistema falle ya sea por falta de agua o por contaminación de una fuente (por ejemplo por motivo de una inundación).
- Múltiples fuentes y aumento en la capacidad de almacenamiento de agua. La dependencia de pocas fuentes de agua aumenta la vulnerabilidad de los sistemas de agua ante los cambios en la oferta esperados del cambio climático. Por otra parte, el almacenamiento de agua permite contrarrestar los efectos esperados del cambio climático y usar el agua en el momento y lugar donde se necesita.
- Reducción de las fuentes de contaminación del agua. Reducir la contaminación de los recursos hídricos en efecto aumenta la oferta de agua disponible. Cualquier medida para reducir la contaminación reducirá también la vulnerabilidad. Esto incluye:
  - Sistemas de alcantarillado y la consecuente reducción en el uso de tanques sépticos.
  - Tratamiento correcto de las aguas residuales domésticas e industriales.
- Protección de los bosques por medio de nuevas áreas silvestres protegidas, ampliación de las existentes o esquemas de pago por servicios ambientales en áreas privadas. Las áreas boscosas reducen la vulnerabilidad al permitir la infiltración de agua a los acuíferos y protegen contra eventos extremos.
- Programas de micro crédito y capacitación con enfoque de género, y mejoras en la atención de servicios sociales de salud. Medidas tendientes a proteger poblaciones vulnerables, como mujeres en situación de pobreza, discapacitados, adultos mayores y niños.
9 Referencias Bibliográficas


SINAC (Sistema Nacional de Áreas de Conservación). 2009. Grúas II. Propuesta de ordenamiento territorial para la conservación de la biodiversidad de Costa
10.1 Anexo 1. Índice de Vulnerabilidad Futura para tres escenarios.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberguería</td>
<td>0.85</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
<td>0.85</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
<td>0.85</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
<td>0.85</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
</tr>
<tr>
<td>Atajaste</td>
<td>0.74</td>
<td>0.74</td>
<td>0.71</td>
<td>0.69</td>
<td>0.74</td>
<td>0.74</td>
<td>0.71</td>
<td>0.69</td>
<td>0.74</td>
<td>0.74</td>
<td>0.71</td>
<td>0.69</td>
<td>0.74</td>
<td>0.74</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>Añaza</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>Abadía</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
</tr>
<tr>
<td>San Cristóbal</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
<td>0.61</td>
<td>0.64</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>San Gregorio</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
<td>0.59</td>
<td>0.63</td>
<td>0.77</td>
<td>0.80</td>
</tr>
<tr>
<td>Navalmoral</td>
<td>0.46</td>
<td>0.47</td>
<td>0.56</td>
<td>0.67</td>
<td>0.46</td>
<td>0.47</td>
<td>0.56</td>
<td>0.67</td>
<td>0.46</td>
<td>0.47</td>
<td>0.56</td>
<td>0.67</td>
<td>0.46</td>
<td>0.47</td>
<td>0.56</td>
<td>0.67</td>
</tr>
<tr>
<td>Vicario</td>
<td>0.43</td>
<td>0.44</td>
<td>0.54</td>
<td>0.65</td>
<td>0.43</td>
<td>0.44</td>
<td>0.54</td>
<td>0.65</td>
<td>0.43</td>
<td>0.44</td>
<td>0.54</td>
<td>0.65</td>
<td>0.43</td>
<td>0.44</td>
<td>0.54</td>
<td>0.65</td>
</tr>
<tr>
<td>Sesma</td>
<td>0.36</td>
<td>0.37</td>
<td>0.46</td>
<td>0.57</td>
<td>0.36</td>
<td>0.37</td>
<td>0.46</td>
<td>0.57</td>
<td>0.36</td>
<td>0.37</td>
<td>0.46</td>
<td>0.57</td>
<td>0.36</td>
<td>0.37</td>
<td>0.46</td>
<td>0.57</td>
</tr>
<tr>
<td>Siones</td>
<td>0.29</td>
<td>0.30</td>
<td>0.39</td>
<td>0.50</td>
<td>0.29</td>
<td>0.30</td>
<td>0.39</td>
<td>0.50</td>
<td>0.29</td>
<td>0.30</td>
<td>0.39</td>
<td>0.50</td>
<td>0.29</td>
<td>0.30</td>
<td>0.39</td>
<td>0.50</td>
</tr>
<tr>
<td>Alcalá</td>
<td>0.26</td>
<td>0.27</td>
<td>0.36</td>
<td>0.47</td>
<td>0.26</td>
<td>0.27</td>
<td>0.36</td>
<td>0.47</td>
<td>0.26</td>
<td>0.27</td>
<td>0.36</td>
<td>0.47</td>
<td>0.26</td>
<td>0.27</td>
<td>0.36</td>
<td>0.47</td>
</tr>
<tr>
<td>El Cuervo</td>
<td>0.23</td>
<td>0.24</td>
<td>0.33</td>
<td>0.44</td>
<td>0.23</td>
<td>0.24</td>
<td>0.33</td>
<td>0.44</td>
<td>0.23</td>
<td>0.24</td>
<td>0.33</td>
<td>0.44</td>
<td>0.23</td>
<td>0.24</td>
<td>0.33</td>
<td>0.44</td>
</tr>
<tr>
<td>El Entorno</td>
<td>0.20</td>
<td>0.21</td>
<td>0.30</td>
<td>0.41</td>
<td>0.20</td>
<td>0.21</td>
<td>0.30</td>
<td>0.41</td>
<td>0.20</td>
<td>0.21</td>
<td>0.30</td>
<td>0.41</td>
<td>0.20</td>
<td>0.21</td>
<td>0.30</td>
<td>0.41</td>
</tr>
<tr>
<td>Enseñada</td>
<td>0.17</td>
<td>0.18</td>
<td>0.27</td>
<td>0.38</td>
<td>0.17</td>
<td>0.18</td>
<td>0.27</td>
<td>0.38</td>
<td>0.17</td>
<td>0.18</td>
<td>0.27</td>
<td>0.38</td>
<td>0.17</td>
<td>0.18</td>
<td>0.27</td>
<td>0.38</td>
</tr>
<tr>
<td>Alcudia</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.34</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.34</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.34</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.34</td>
</tr>
<tr>
<td>Grandas</td>
<td>0.11</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
<td>0.11</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
<td>0.11</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
<td>0.11</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>El Barco</td>
<td>0.09</td>
<td>0.10</td>
<td>0.16</td>
<td>0.27</td>
<td>0.09</td>
<td>0.10</td>
<td>0.16</td>
<td>0.27</td>
<td>0.09</td>
<td>0.10</td>
<td>0.16</td>
<td>0.27</td>
<td>0.09</td>
<td>0.10</td>
<td>0.16</td>
<td>0.27</td>
</tr>
<tr>
<td>Los Peñas</td>
<td>0.07</td>
<td>0.08</td>
<td>0.14</td>
<td>0.25</td>
<td>0.07</td>
<td>0.08</td>
<td>0.14</td>
<td>0.25</td>
<td>0.07</td>
<td>0.08</td>
<td>0.14</td>
<td>0.25</td>
<td>0.07</td>
<td>0.08</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>La Mancha</td>
<td>0.05</td>
<td>0.06</td>
<td>0.11</td>
<td>0.22</td>
<td>0.05</td>
<td>0.06</td>
<td>0.11</td>
<td>0.22</td>
<td>0.05</td>
<td>0.06</td>
<td>0.11</td>
<td>0.22</td>
<td>0.05</td>
<td>0.06</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>Los Remedios</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>La Isla</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
</tr>
<tr>
<td>La Gomera</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>La Palma</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>El Teide</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>El Transporte</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
</tbody>
</table>
10.2 Anexo 2. Regresiones Lineales y coeficientes estimados

Con base en las regresiones lineales realizadas por cantón se calcularon los valores de m y b correspondientes a cada escenario. Se utilizó una función del tipo:

$$\text{IDH} = \ln(t) \cdot m + b$$

Donde t= período de tiempo, m= coeficiente de regresión, \(\ln\)=logaritmo natural y b= constante. Esta ecuación se estimó para todos los cantones. A manera de ejemplo, se presentan los resultados para el escenario AD, a nivel del cantón cabecera de las provincias en el Cuadro 11. Estos coeficientes son los que determinan el comportamiento a futuro del IDH en cada uno de los cantones.

### Cuadro 11. Coeficientes de regresión estimados para cantones seleccionados.

<table>
<thead>
<tr>
<th>Cantón</th>
<th>M</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alajuela</td>
<td>0.028954546</td>
<td>0.684985034</td>
</tr>
<tr>
<td>Cartago</td>
<td>0.046783451</td>
<td>0.672522901</td>
</tr>
<tr>
<td>Heredia</td>
<td>0.045506249</td>
<td>0.719279728</td>
</tr>
<tr>
<td>Liberia</td>
<td>0.067273479</td>
<td>0.582482288</td>
</tr>
<tr>
<td>Limón</td>
<td>0.024057728</td>
<td>0.645166340</td>
</tr>
<tr>
<td>Puntarenas</td>
<td>0.063689584</td>
<td>0.586767521</td>
</tr>
<tr>
<td>San José</td>
<td>0.033458525</td>
<td>0.720787486</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia
## 10.3 Anexo 3. Proyecciones de los Indicadores por cantón para el año 2030 escenario AD

<table>
<thead>
<tr>
<th>Cantón</th>
<th>Proyección 2030</th>
<th>Proyección 2031</th>
<th>Proyección 2032</th>
<th>Proyección 2033</th>
<th>Proyección 2034</th>
<th>Proyección 2035</th>
<th>Proyección 2036</th>
<th>Proyección 2037</th>
<th>Proyección 2038</th>
<th>Proyección 2039</th>
<th>Proyección 2040</th>
<th>Proyección 2041</th>
<th>Proyección 2042</th>
<th>Proyección 2043</th>
<th>Proyección 2044</th>
<th>Proyección 2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Coruña</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
<td>0.90</td>
<td>0.94</td>
<td>0.98</td>
<td>1.02</td>
<td>1.06</td>
<td>1.10</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
<td>0.96</td>
<td>1.00</td>
<td>1.04</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
<td>0.90</td>
<td>0.94</td>
<td>0.98</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.30</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
<td>0.90</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.26</td>
<td>0.30</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.24</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.22</td>
<td>0.26</td>
<td>0.30</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.20</td>
<td>0.24</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
</tr>
<tr>
<td>A Coruña</td>
<td>0.18</td>
<td>0.22</td>
<td>0.26</td>
<td>0.30</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Nota: Rojo > 0.85; anaranjado <0.85 y >0.70; amarillo <0.70 y >0.5; blanco < 0.5.