The territory

To study territorial resilience

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>795,937 inhab</td>
</tr>
<tr>
<td>Surface</td>
<td>2,118 km²</td>
</tr>
<tr>
<td>Counties</td>
<td>29</td>
</tr>
<tr>
<td>Cities & villages</td>
<td>82</td>
</tr>
</tbody>
</table>
The project

- Find a «resilience index» for a territory face to major natural and industrial hazards in the future: other risks and threats...
- A qualitative «index»
- Mixing prevention, planning, preparedness, risk education, emergency management, economical and social resilience and recovery
- Based on «global view» on a territory
- Objectives: optimize a costly system of “reparation”
Feb 2010 Xynthia Storm: 53 Deaths
Bad prevention “implementation”
Good emergency response
Poor resilience response
Population unhappy
Law suits….. – big losses
How to implement Societal Resilience?
Searching for an Index:
How do we proceed?

Defining a « gravity » mark for the territory including:

- natural and technological hazards (occurrence & intensity)
- stakes at risk (importance & vulnerability)
Defining an “ability to react” mark for the territory:

Studying all kind of prevention process – emergency planning & preparedness - education – assurance – communication – relationship between stake-holders...

<table>
<thead>
<tr>
<th>ANTICIPATION (Risk prevention & education)</th>
<th>REACTIVITY (Response of all kinds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDRM – Major hazard document on the Dept.</td>
<td>PCS – Emergency plan for cities</td>
</tr>
<tr>
<td>DICRIM – Risk education document for population (city & school)</td>
<td>POI - PPI – Emergency plan – industrial hazards</td>
</tr>
<tr>
<td>PPRN (prevention plan for major natural risk)</td>
<td>PPMS - School emergency plans</td>
</tr>
<tr>
<td>PPRT (prevention plan for major industrial risk)</td>
<td>White (Hospital) plan</td>
</tr>
<tr>
<td>SDACR (Planning organization for fire and rescue responders)</td>
<td>ORSEC response framework</td>
</tr>
</tbody>
</table>
Searching for an Index: How do we proceed?

Resilience index:

- “Ability to react” mark
- “Gravity” mark

If > 1 Resilience positive

If < 1 territory still at risk.

But an index >1 does not mean all the work is done!
Beyond the Index: Increasing territorial resilience

Beside rating the resilience, we also focus on highlighting the ways to reinforce resilience with the best economic efficiency.

So the territorial resilience index must be a qualitative index!
The ability to react mark

CONSCIOUSNESS
Risk education
Risk information

ABILITY TO REACT

ANTICIPATION
Prevention planning
Vigilance
Warning

PREPAREDNESS
Intervention planning
Exercises
Training / Formation

GOVERNANCE
Politician commitment
Budgets
Inter-actor relationship
Skills
Financial cover
Social cohesion
Beyond the Index:

Reactivity = 24

Resilience Index would be 1.5

Gravity = 16
Beyond the Index:

Less and more
We need to be less vulnerable and more reactive
How do we collect data:

The inquiries

Interview with the persons in charge of major natural and technological hazards in:

<table>
<thead>
<tr>
<th>cities</th>
<th>The Regional Environnement Administration (DREAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Prefecture and its specialized services</td>
<td>The Regional Health Administration (ARS)</td>
</tr>
<tr>
<td>the FireDepartment (SDIS 44)</td>
<td>the local Education Administration (Académie de Nantes)</td>
</tr>
<tr>
<td>the industrial complexes</td>
<td></td>
</tr>
</tbody>
</table>

Of course, beside our own research.
First study (2010-2011): The area
First study (2010-2011): The results

- Unequal level of preparedness between stakeholders. Low for cities, higher for local administration.
- Low level of communication on natural and technological hazards matters.
- Weak governance. Not enough intercourse between actors. Low budgets dedicated.
Second study (2011): The area
Second study (2011):

Course of action:

- Upgrading the methodology.
- Collecting information by questionnaire and inquiries.
- Information processing (November-December 2011).
- Final report redaction (December 2011).

Study is on going!
• Second Study Delivery: January 2012
• Second approach to see « validity » of the concept facing field reality
• Supported by the Ministry of Ecology and Sustainable Development
10 key points to achieve Resilience

Reduce Gravity

1. Risk and vulnerability assessment
2. Taking care of risks in economic development
3. Insurances policy
4. Prevention & Preparedness
5. Risk education

Reinforcing Response

6. Warning People may be affected
7. Safety of people and goods
8. Business continuity
9. Manage Emergency/Crisis Management (and post)
10. Planning economic resilience
• Risque, aléas (p+i), Enjeux (I+V)
• Risque mesuré (=qualifié) de 0 à 100 soit (5+5)*(5+5)
• Le risque est classifié (selon une échelle de 1 à 6) qui donne des appréciations sur la gravité
• La gravité se mesure par le produit (p+i)*(I+V)

• Pour réduire la gravité : renforcer la réactivité
• Réactivité = « anticipation » (= vigilance et préparation) & « culture du risque » (= conscience et confiance)
• On a donc réactivité = (v+p) * (c+c), à savoir 5+5 * 5+5
• On a donc 2 indicateurs : GRAVITE et REACTIVITE, données chiffrables.

• Indice de résilience : REACTIVITE/ GRAVITE

• Si indice > 1 alors résilience positive pour le territoire
• Si indice < 1 risque pour le territoire

• Rôle de « ERIS » ?