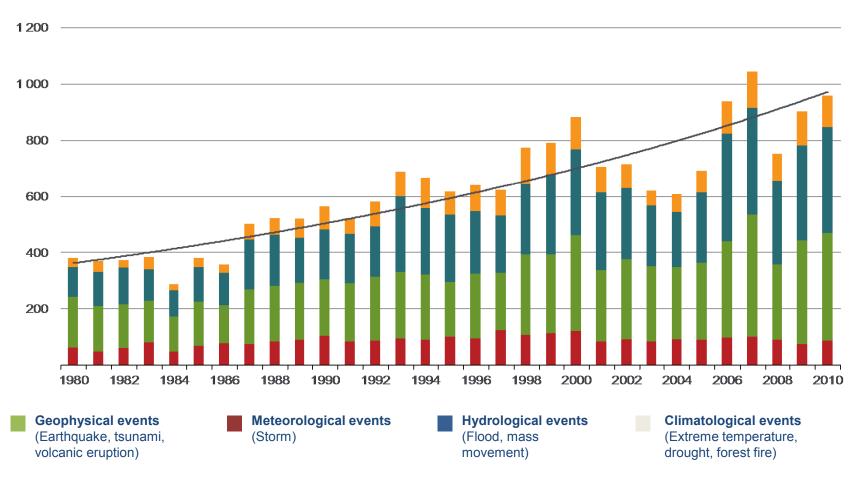


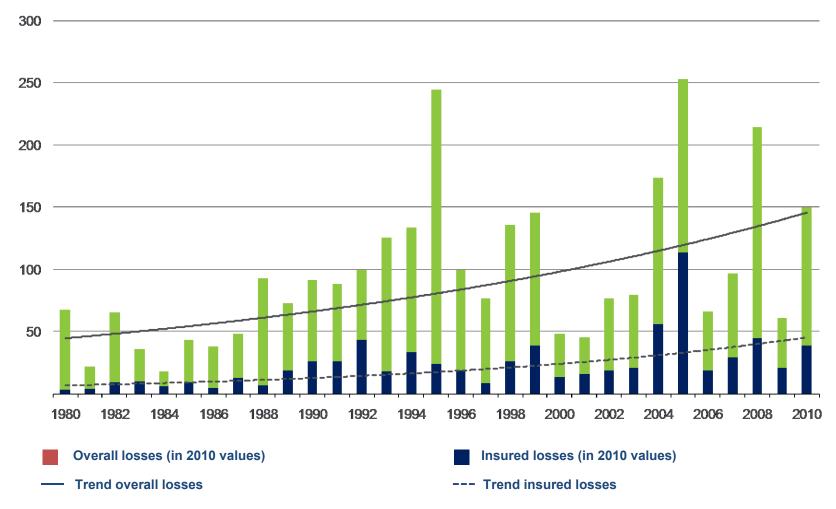
### Disaster Risk Reduction: From Integrated Research to Effective Risk Management

International Workshop on Governance of Climate-related Risks in Europe: the need for policy-oriented research Brussels, 8-9 September 2011

> Sálvano Briceño Chair-elect, Science Committee, IRDR






International Strategy for Disaster Reduction Natural catastrophes worldwide 1980 – 2010 Number of events with trend

#### Number



Natural catastrophes worldwide 1980 – 2010 Overall and insured losses with trend



#### Significant natural catastrophes worldwide 1980 – 2010 10 costliest natural catastrophes ordered by overall losses

| Devied                | Friend              |                                                                                                    | Overall losses          | Insured losses |            |
|-----------------------|---------------------|----------------------------------------------------------------------------------------------------|-------------------------|----------------|------------|
| Period                | Event               | Affected Area                                                                                      | US\$ m, original values |                | Fatalities |
| 25-30.8.2005          | Hurricane Katrina   | USA: LA, New Orleans, Slidell; MS, Biloxi,<br>Pascagoula, Waveland, Gulfport                       | 125,000                 | 62,200         | 1,300      |
| 17.1.1995             | Earthquake          | Japan: Hyogo, Kobe, Osaka, Kyoto                                                                   | 100,000                 | 3,000          | 6,400      |
| 12.5.2008             | Earthquake          | China: Sichuan, Mianyang, Beichuan, Wenchuan,<br>Shifang, Chengdu, Guangyuan, Ngawa, Ya'an         | 85,000                  | 300            | 84,000     |
| 17.1.1994             | Earthquake          | USA: Northridge, Los Angeles, San Fernando<br>Valley, Ventura, Orange                              | 44,000                  | 15,300         | 60         |
| 6-14.9.2008           | Hurricane Ike       | USA. Cuba. Haiti. Dominican Republic. Turks and Caicos Islands. Bahamas                            | 38,300                  | 18,500         | 170        |
| May-September<br>1998 | Floods              | China: Jangtsekiang, Songhua Jiang                                                                 | 30,700                  | 1,000          | 4,200      |
| 27.2.2010             | Earthquake, tsunami | Chile: Bio Bio, Concepción, Talcahuano, Coronel,<br>Dichato, Chillán; Del Maule, Talca, Curicó     | 30,000                  | 8,000          | 520        |
| 23.10.2004            | Earthquakes         | Japan: Honshu, Niigata, Ojiya, Tokyo, Nagaoka,<br>Yamakoshi                                        | 28,000                  | 760            | 50         |
| 23-27.8.1992          | Hurricane Andrew    | USA: FL, Homestead; LA. Bahamas                                                                    | 26,500                  | 17,000         | 60         |
| 27.6-13.8.1996        | Floods              | China: Guizhou, esp. Guiyang; Zhejiang; Sichuan;<br>Hunan; Anhui; Jiangxi; Hubei; Guangxi; Jiangsu | 24,000                  | 445            | 3,050      |

#### Significant natural catastrophes worldwide 1980 – 2010 10 costliest natural catastrophes ordered by insured losses

| Devied        | Friend                      |                                                                                                | Overall losses          | Insured losses |            |
|---------------|-----------------------------|------------------------------------------------------------------------------------------------|-------------------------|----------------|------------|
| Period        | Event                       | Affected Area                                                                                  | US\$ m, original values |                | Fatalities |
| 25-30.8.2005  | Hurricane Katrina           | USA: LA, New Orleans, Slidell; MS, Biloxi,<br>Pascagoula, Waveland, Gulfport                   | 125,000                 | 62,200         | 1,300      |
| 6-14.9.2008   | Hurricane Ike               | USA. Cuba. Haiti. Dominican Republic. Turks and Caicos Islands. Bahamas                        | 38,300                  | 18,500         | 170        |
| 23-27.8.1992  | Hurricane Andrew            | USA: FL, Homestead; LA. Bahamas                                                                | 26,500                  | 17,000         | 60         |
| 17.1.1994     | Earthquake                  | USA: Northridge, Los Angeles, San Fernando<br>Valley, Ventura, Orange                          | 44,000                  | 15,300         | 60         |
| 7-21.9.2004   | Hurricane Ivan              | USA. Trinidad and Tobago. Venezuela. Colombia.<br>Mexico                                       | 23,000                  | 13,800         | 130        |
| 19-24.10.2005 | Hurricane Wilma             | USA. Bahamas. Cuba. Haiti. Jamaica. Mexico                                                     | 22,000                  | 12,500         | 40         |
| 20-24.9.2005  | Hurricane Rita              | USA: LA, Lake Charles, Holly Beach, Cameron,<br>New Orleans; MS; TX, Houston                   | 16,000                  | 12,100         | 10         |
| 27.2.2010     | Earthquake, tsunami         | Chile: Bio Bio, Concepción, Talcahuano, Coronel,<br>Dichato, Chillán; Del Maule, Talca, Curicó | 30,000                  | 8,000          | 520        |
| 11-14.8.2004  | Hurricane Charley           | USA. Cuba. Jamaica. Cayman Islands                                                             | 18,000                  | 8,000          | 40         |
| 26-28.9.1991  | Typhoon Mireille,<br>floods | Japan: Kyushu, Hokkaido, Hakata                                                                | 10,000                  | 7,000          | 60         |

#### Significant natural catastrophes worldwide 1980 – 2010 10 deadliest events

| Pariad           | Event                | Affected Area                                                                                  | Overall losses | Insured losses | Fatalities |
|------------------|----------------------|------------------------------------------------------------------------------------------------|----------------|----------------|------------|
| Period           | Event                | Anected Area                                                                                   | US\$ m, orig   | Falanties      |            |
| 12.1.2010        | Earthquake           | Haiti: Port-au-Prince, Petionville                                                             | 8,000          | 200            | 222,570    |
| 26.12.2004       | Earthquake, tsunami  | Sri Lanka. Indonesia. Thailand. India. Bangladesh.<br>Myanmar. Malediven. Malaysia             | 10,000         | 1,000          | 220,000    |
| 2-5.5.2008       | Cyclon Nargis        | Myanmar: Ayeyawaddy, Yangon, Bugalay,<br>Irrawaddy, Bago, Karen, Mon, Laputta, Haing Kyi       | 4,000          |                | 140,000    |
| 29-30.4.1991     | Tropical cyclon      | Bangladesh: Bay of Bengal, Cox's Bazar,<br>Chittagong, Bola, Noakhali districts, esp. Kutubdia | 3,000          | 100            | 139,000    |
| 8.10.2005        | Earthquake           | Pakistan. India. Afghanistan                                                                   | 5,200          | 5              | 88,000     |
| 12.5.2008        | Earthquake           | China: Sichuan, Mianyang, Beichuan, Wenchuan,<br>Shifang, Chengdu, Guangyuan, Ngawa, Ya'an     | 85,000         | 300            | 84,000     |
| July-August 2003 | Heatwave, drought    | France. Germany. Italy. Portugal. Romania. Spain. United Kingdom                               | 13,800         | 20             | 70,000     |
| July-Sept. 2010  | Heatwave, drought    | Russia                                                                                         | 2,000          | 20             | 56,000     |
| 21.6.1990        | Earthquake           | Iran: Caspian Sea, Gilan Provinz, Manjil, Rudbar,<br>Zanjan, Safid, Qazvin                     | 7,100          | 100            | 40,000     |
| 8-19.12.1999     | Floods, flash floods | Venezuela: Vargas, La Guaira Punta de Mulatos,<br>Miranda, Nueva Esparta, Yaracuy. Kolumbien   | 3,200          | 220            | 30,000     |

### **Global Trends - Disasters are NOT natural**

Greater exposure to natural and humaninduced hazards, climate change and variability



**VULNERABILI** 

Socio-economic: poverty & unsustainable development styles, unplanned urban growth and migrations, lack of risk awareness & risk governance institutions & accountability...

Physical: insufficient land use planning, housing & critical infrastructure in hazard prone areas, little safety awareness...

Ecosystem & natural resource depletion (coastal, mountains, watersheds, wetlands, forests...) World Conference on Disaster Reduction 2<sup>nd</sup> WCDR, Kobe, Hyogo, Japan, 18-22 January 2005

### Hyogo Framework for Action 2005-2015: Building the resilience of nations and communities to disasters (HFA)

- ✓ 3 Strategic goals
- $\checkmark$  5 Priorities for action
- ✓ Implementation and follow-up

#### **Expected outcome:**

The WCDR resolved to pursue the following expected outcome for the next 10 years: *the substantial reduction of disaster losses, in lives & in the social, economic & environmental assets of communities & countries.* The realization of this outcome will require the full commitment & involvement of all actors concerned, including governments, regional & international organizations, civil society including volunteers, the private sector & the scientific community.

### Hyogo Framework for Action 2005-2015 (continued)

3 strategic goals:

- The integration of disaster risk reduction into sustainable development policies & planning

- The development & strengthening of institutions, mechanisms & capacities to build resilience to hazards

- The systematic incorporation of risk reduction approaches into the implementation of emergency preparedness, response & recovery programmes

### Hyogo Framework for Action 2005-2015 (continued)

Five priorities for action:

1. Governance: ensure that disaster risk reduction is a national and local priority with strong institutional basis for implementation

2. Risk identification: identify, assess and monitor disaster risks and enhance early warning

3. Knowledge: use knowledge, innovation and education to build a culture of safety and resilience at all levels

4. Reducing the underlying risk factors in various sectors (environment, health, construction, private sector etc.)

5. Strengthen disaster preparedness for effective response

# **Key questions:**

 Why, despite advances in the natural and social science of hazards and disasters, do losses continue to increase?

 To what extent is the world-wide growth in disaster losses a symptom and indicator of unsustainable development?



### Partners

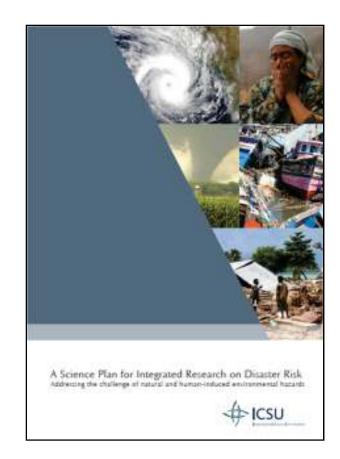
- National and international science institutions
- National and international development assistance agencies and funding bodies










International Strategy for Disaster Reduction



# The Science Plan

Addressing the challenge of natural and human-induced environmental hazards

An integrated approach to research on disaster risk through: an international, multidisciplinary (natural, health, engineering and social sciences, including socioeconomic analysis) collaborative research programme.





### IRDR Science Plan at: http://www.irdrinternational.org/

# Scope of IRDR

- Geophysical, climate and weather-related trigger events
- Earthquakes tsunamis volcanoes floods storms (hurricanes, cyclones, typhoons) – heat waves – droughts – wild-fires – landslides – coastal erosion – climate change (increases of extreme events)
- Effects of human activities on creating or enhancing disasters, including land-use practices
- Space weather and impact by near-Earth objects
- NOT disasters triggered by technological failure (but technological failure triggered by geophysical and climate-weather events), warfare...





### **Objective-1:**

### Characterization of hazards, vulnerability and risk

- 1.1: identifying hazards and vulnerabilities leading to risks;
- 1.2: forecasting hazards and assessing risks; and
- 1.3: dynamic modelling of risk
- HFA-2. Identify, assess and monitor disaster risks and enhance early warning



# **Objective 2:**

Effective decision making in complex and changing risk contexts

- 2.1: Identifying relevant decision-making systems and their interactions
- 2.2: Understanding decision making in the context of environmental hazards; and
- 2.3: Improving the quality of decision-making practice
- HFA-1. DRR-national priority
- HFA-5. Strengthen disaster preparedness

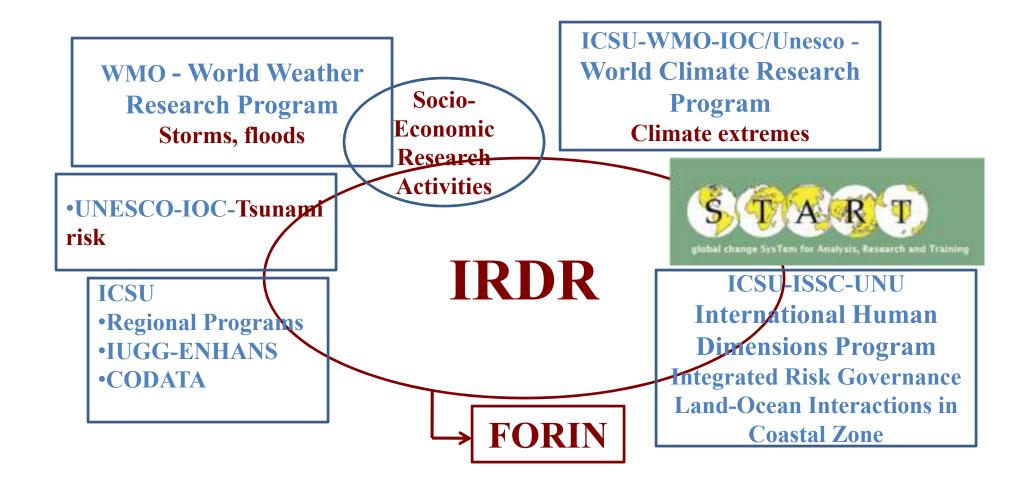


## **Objective 3:**

### Reducing risk and curbing losses through knowledge-based actions

- 3.1: Vulnerability assessments;
- 3.2: Effective approaches to risk reduction
- Long-term database, monitoring systems and tools
- HFA-4. Reduce the underlying risk factors
- HFA-3. knowledge culture of safety and resilience




## **Cross-Cutting Themes**

- **1. Capacity building**
- 2. Case studies and demonstration projects
- 3. Assessment, data management and monitoring
  - HFA-2. Identify, assess and monitor disaster risks
  - HFA-1, -HFA-3,- HFA-4, HFA-5...

**Extreme Climate Events** 



er risks HFA-4, HFA-5... IPCC Special Report on Managing Risk of



# **Risk Interpretation and Action (RIA)**

- What do people (especially those at risk) think is likely to happen? & What will they do about it?
- Estimation of the likelihood and magnitude
- Evaluation of the vulnerability/resilience of the physical infrastructure

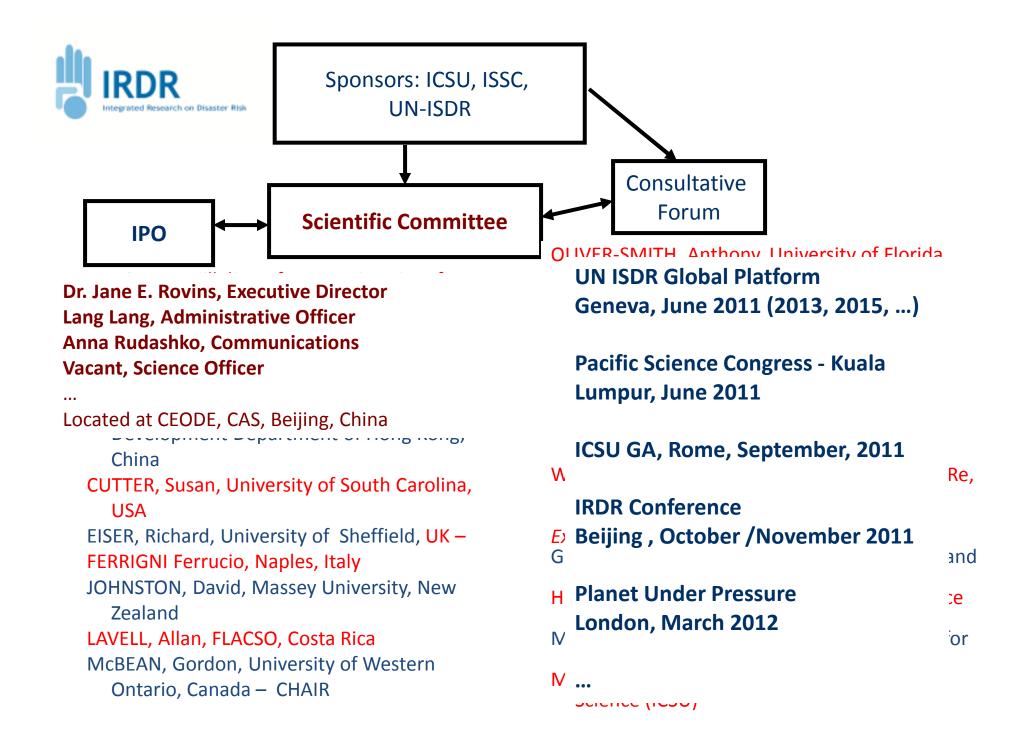


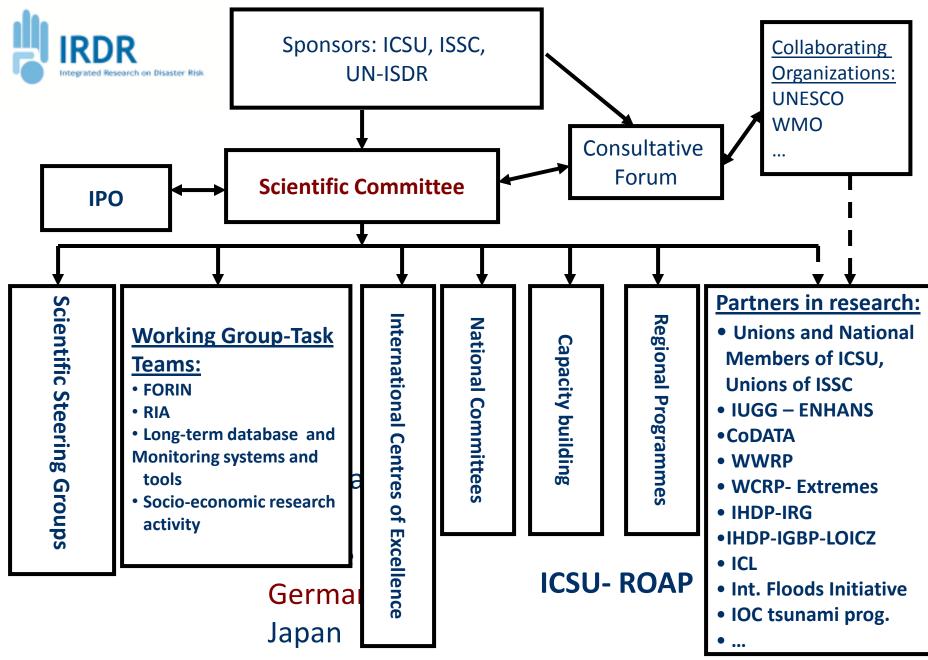
 Consideration of social and behavioral factors
that place the local
population at greater or
lesser risk



# IRDR Forensic Disaster Investigations (FORIN)

- Probe further into complex and underlying causes of growing disaster loss
- Fundamental cause of disasters
- Trace out and assign causal explanation of losses
- Intervening conditions that increased or reduce losses
- Series of case studies


ted Research on Disaster Risk


Common template and methodology



### • Disaster Loss Data Project (DATA)

- ... need for more systematic and reliable information on such events. ... generate new information and data and to leave a legacy of coordinated and integrated global data and information sets across hazards and disciplines, with unprecedented degrees of access
- Assessment of Integrated Research on Disaster Risk (AIRDR)
- First systematic and critical assessment of research on disaster risk, provide baseline to measure effectiveness of multiple programmes
  IRDR





## **IRDR Legacy**

 An enhanced capacity around the world to address hazards and make informed decisions on actions to reduce their impacts.

 Societies to shift focus from responserecovery towards prevention-mitigation, building resilience and reducing risks, learning from experience and avoiding past mistakes.
IRDR INTER



### Registration and Abstract Submission Open



IRDR Conference 2011 Oct. 31 - Nov. 2, Beijing www.irdrinternational.org/conference2011

Why, despite advances in the natural and social science of hazards and disasters, do losses continue to increase?

To what extent is the world-wide growth in disaster losses a symptom and indicator of unsustainable development?



### **Disaster Risk: Integrating Science & Practice**

#ICSU



### **Global Earthquake Model**

## Uniform and Open Standards to Calculate and Communicate Earthquake Risk

Seismic risk mitigation requires accurate, consensual and uniform risk estimates.

Since strong earthquakes know no political boundaries and occur relatively rarely, a global knowledge-sharing approach is required,

which should lead also to the development of socio-economic impact assessment tools, including cost-benefit analysis,

involving both the public and the private sectors, as well as international organisations, professionals associations and the wider community..



"A collaborative effort devised and **launched by the OECD Global Science** Forum, aimed at engaging the global community in the design, development and deployment of uniform open standards and tools for earthquake risk assessment worldwide"



### PUBLIC-PRIVATE PARTNERSHIP

they contribute 7 private organisations have 9 countries have 13.6 M Euro partnered up with GEM so far adhered so far

discussions and negotiations are ongoing with 15+ others the OECD, WorldBank, UNESCO, UN/ISDR, IAEE and IASPEI are associative participants



### PRIVATE PARTICIPANTS

Founders:



#### Sponsors:





### PUBLIC PARTICIPANTS





### ASSOCIATE PARTICIPANTS

| OECD           | OECD       | Organization for Economic Cooperation and Development                       |
|----------------|------------|-----------------------------------------------------------------------------|
|                | WORLD BANK | The World Bank                                                              |
| ISDR           | UN-ISDR    | United Nations International Strategy for Disaster Risk Reduction           |
| <u>IIIESEI</u> | UNESCO     | United Nations Educational, Scientific and Cultural Organization            |
|                | IASPEI     | International Association of Seismology and Physics of the Earth's Interior |
|                | IAEE       | International Association of Earthquake Engineering                         |



For and from the community..



- scientific modules of GEM that are developed at a global scale to provide standards, methods and tools for global datasets
- addressed by international consortia that respond to Requests for Proposals (RfPs) released periodically by the Scientific Board
- before consortia are selected there is a thorough process of expert elicitation, community feedback, and peer review
- provide the global framework for the model which will be reviewed and further developed by the Regional Programmes to ensure they are adequate for regional needs and characteristics



#### GEM1

Pilot project to generate GEM's first products and develop GEM's initial infrastructure

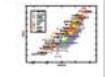


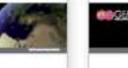
preliminary global seismic risk calculations



ormats




review of global


vulnerability

and









unplie of hand mobile.

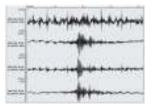


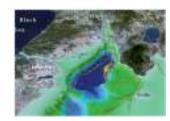


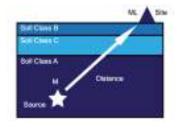
UNI NUM CAN'S ITTN STATE





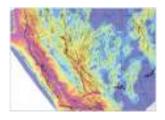



### HAZARD GLOBAL COMPONENTS

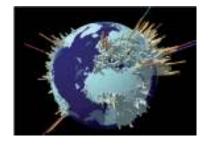
- Expert elicitation, 5 Request for Proposals (RfP) drafting and publication
- International consortia submitted 9 proposals (20+ Institutions)
- 14 peer reviewers, Scientific Board selection, Governing Board decision.

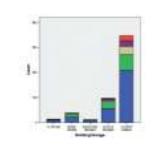


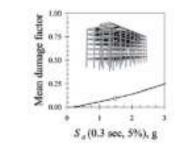








Global Earthquake History Global Instrumental Earthquake Catalogue Global Active Fault and Seismic Source Database Global Ground-Motion Prediction Equations Global Geodetic Strain Rate Model



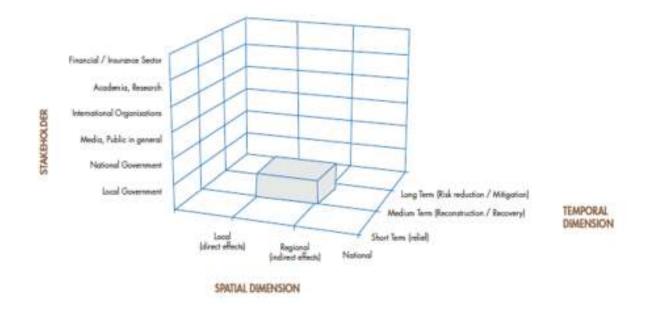

### **RISK GLOBAL COMPONENTS**

- Expert elicitation, 5 Requests for Proposals (RfP) drafting, community feedback, RfP review and publication
- International consortia submitted 14 proposals (60+ Institutions)
- 20 peer reviewers, Scientific Board selection, Governing Board decision.



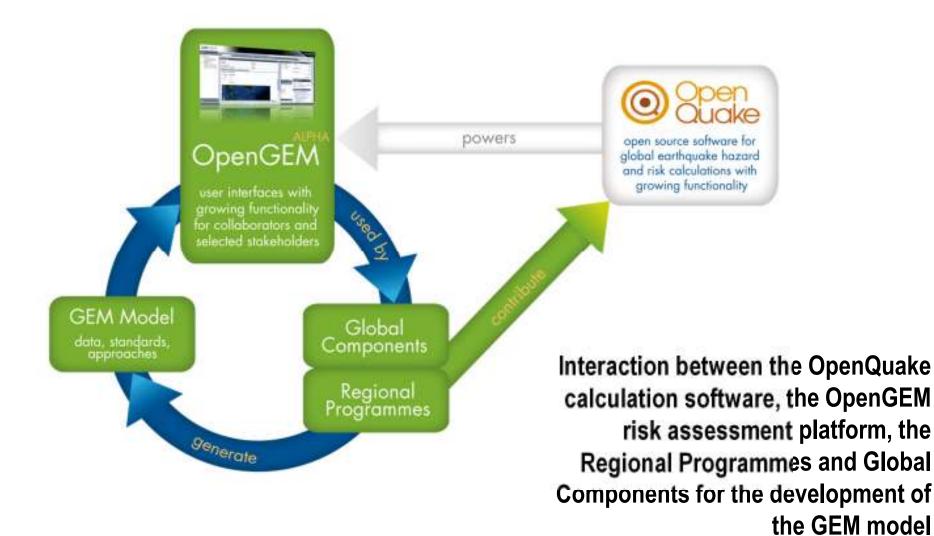





building interaction with taxonomies the community Risk = Hazard x Vulnerability x Value rechnical communication ontology wiki DEFINITIONS white papers GEM Ontology and Taxonomy Global Exposure Database Global Earthquake Consequences Database Global Vulnerability Estimation Methods Inventory Data Capture Tools

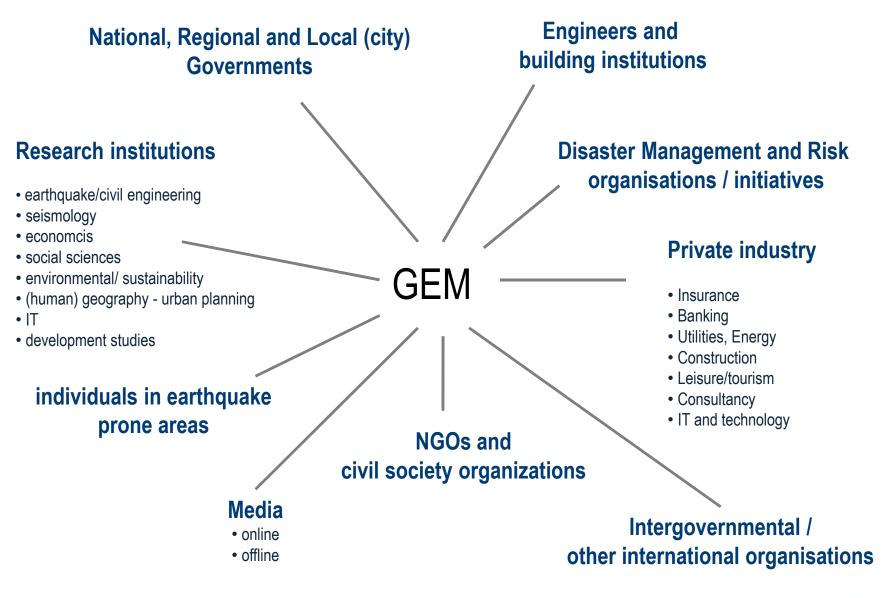





### SOCIO-ECONOMIC IMPACT GLOBAL COMPONENT

- Expert elicitation, 7 workshops and meetings, 1 Request for Proposal (RfP) drafting, community feedback, RfP review and publication
- International consortia submitted 3 proposals (20+ institutions)
- 7 peer reviewers, Scientific Board selection, Governing Board decision.






### OPENGEM DEVELOPMENT 2011-2013





### SERVING USERS & BENEFICIARIES





### CONCLUDING: MAIN FEATURES

#### ... of a Global Earthquake Risk Model

- It must consist of a state-of-the-art, independent, transparent/open and consistent standard/model to calculate earthquake risk
- It must be dynamic, modular, flexible, expandable (i.e. not a map nor a report)
- It should serve the needs of all possible users, from the general public to the decision makers, communicating risk in an effective manner
- It must stem from a public-private partnership, combining the strengths (and objectives) of both the public and the private sectors
- It needs to be community-based and public-owned, in order to be consensual, accepted and actually used
- It has to feature regional and global coverage and facilitate technology-transfer



### FURTHER INFORMATION



#### Plans and sport standards to calculate and communicate surflips day risk workford

#### Global Earthquake Model Report 2009/2010

### **GEM Website**

- Most update source of information
- News, results, calls, ...

### GEM Report 2009/2010

- 36 pages
- Available from website and hard-copy

### **Bi-monthly e-Newsletter**

Sign-up at website

### **GEM Handout**

Available from website and hard-copy





Thank you

# www.irdrinternational.org





