Commercial underwater cable systems could reduce disaster impact

Source(s): Eos - AGU

By Frederik Tilmann, Bruce M. Howe, and Rhett Butler 

Every minute counts in the business of tsunami early warning because tsunami waves often arrive less than 30 minutes after offshore earthquakes. Because most massive subduction zone quakes occur offshore, offshore observations are extremely valuable for quickly detecting and characterizing potential tsunamis. At the same time, unnecessary evacuations are costly and can endanger lives, so false warnings must be minimized.

The current Deep-ocean Assessment and Reporting of Tsunamis (DART) system uses ocean bottom pressure sensors to detect ocean-crossing tsunamis. The DART sensors are too sparse and too distant from shore to provide local warnings, and other real-time solutions like dedicated submarine detection cables come with a hefty price tag. Comprehensive coverage of all endangered subduction zones is out of reach using these systems, particularly in the developing world, but another approach that adds new capabilities to an existing resource could be a significant step in the right direction.

Today, submarine telecommunications cables cross the world’s oceans, and many run through or parallel to margins threatened by subduction zone earthquakes. The cables that currently form this network are not sensing their environment; however, these cables are routinely replaced every 10 to 15 years. Installing suitably modified repeaters along future cables, spaced at nominal 50-kilometer (31-mile) intervals, could provide power and bandwidth for sensors along these cables.

Last November, a group of research scientists, practitioners from earthquake observatories and tsunami warning centers, and engineers gathered for a workshop in Potsdam, Germany, to discuss the viability of a new early warning system that uses enhanced telecommunications cables to create a Science Monitoring and Reliable Telecommunications (SMART) network capable of detecting tsunamis and shaking from great earthquakes. They further discussed how SMART cable sensor arrays would support research into tsunami excitation and propagation, the physics of great earthquakes, and the structure of Earth.

Given the needs of operational earthquake observatories and tsunami warning centers, attendees were excited about the concept of SMART cable systems equipped with accelerometers, pressure gauges, and temperature sensors. This concept is being advanced by a joint task force of the International Telecommunication Union, the World Meteorological Organization, and the Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization. The Potsdam workshop followed two prior NASA workshops focused on applications in climate research and oceanography.

In one of the studies presented at the meeting, models showed that a few cables crossing the Pacific could reduce the time to detection of potentially tsunami inducing earthquakes by approximately 20%. The time to detection of the actual tsunami wave would be similarly reduced. Furthermore, the linear sensor arrays enabled by the SMART cables allow direct measurements of the tsunami wavefield. Such dense sampling could reduce the dependence on seismological networks and allow researchers to characterize tsunamis triggered by submarine landslides or other nontectonic sources.

Workshop participants identified several potential targets for a small demonstration system, including existing cabled seafloor observatories. The participants agreed the demonstration systems should be deployed in a manner equivalent to commercial cable-laying operations to demonstrate the viability of the SMART cable vision and to deliver valuable science data.

Creative Commons BY 3.0

Explore further

Share this

Please note: Content is displayed as last posted by a PreventionWeb community member or editor. The views expressed therein are not necessarily those of UNDRR, PreventionWeb, or its sponsors. See our terms of use

Is this page useful?

Yes No Report an issue on this page

Thank you. If you have 2 minutes, we would benefit from additional feedback (link opens in a new window).