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Figure 1 : City of Dhaka, Bangladesh. In white transparency the “urban” areas as reported 

by the processing of MODIS satellite data (500-m-resolution) (Schneider, Friedl, and Potere, 

2009), while the colored dots are built-up structures as detected using high-resolution input 

imagery (2.5-m-resolution) (Pesaresi et al. 2013). Note the large amount of information 

related to built-up areas not reported in the low-resolution dichotomy declared in the “urban” 
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Figure 2 : North of Dhaka, Bangladesh. Detail of the typical settlement pattern not reported 

in the low-resolution dichotomy declared in the MODIS “urban” layer, despite the fact that a 

clear dominance of human presence on the ground can be observed using high-resolution 

sensors. Note how the pattern is connoted by a mixture of urban / rural residential, 

productive, and agricultural use, with rural residential structures often spatially related to the 
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Abstract 
The Global Built-up Reference Layer (BUREF2010) is a spatial raster dataset containing an 

estimation of the distribution and density of built-up areas using publicly available global 

spatial data related to the year 2010. In particular, satellite-derived land cover information 

and population density grid are used within a raster model to infer, per each spatial unit, the 

percentage of land occupied by buildings. The paper briefly outlines the rationale, the most 

important methodological steps adopted for the production of BUREF and some examples of 

outputs. 

 

Introduction and rationale 
Global estimation of built surfaces is needed for a variety of applications spanning from 

climate change adaptation, economical growth monitoring, human ecological footprint 

analysis, to urban and regional planning. In the context of disaster risk and crisis 

management, geoinformation on built-up and settlements is required for exposure mapping, 

and damage and risk assessment. Maps showing the location and extent of built-up areas 

are especially vital to produce high quality and updated information concerning patterns and 

processes occurring in the urban environment (Potere and Schneider 2007).  

The original purpose of BUREF2010 was to contribute as prior knowledge information used 

during automatic mapping tasks to produce the global fine-scale human settlement layer. In 

particular, BUREF was designed as training set in support to the machine learning phase 

during the automatic image information retrieval tasks applied to high and very-high satellite 

images input (Pesaresi et al., 2013). More specifically, the purpose was related to i) the 

calibration of the heterogeneous HR/VHR input data based on information contents,  ii) 

training set collection functional to the learning/classification tasks, and iii) automatic ranking 

of the information outputs and mosaic of multi-scene processing. 

At the time of the study, the most spatially accurate urban global information layer publicly 

available was created from classification of Moderate Resolution Imaging Spectroradiometer 

(MODIS) data circa 2001-2002, having a nominal spatial resolution of 463 m (Schneider, 

Friedl, and Potere, 2009). According to the intentions of the authors, the MODIS Urban Land 

Cover layer reports about “areas dominated by built environment (coverage >50%), 

including non-vegetated, human-constructed elements, with minimum mapping unit > 1 

km2”. The MODIS “Urban” layer is coded as binary mask reporting the presence or absence 

of the “Urban” land cover.  

For use in the global fine-scale human settlement modeling, the MODIS “Urban” layer shows 

some drawbacks originated by both sensor technology and data processing methodology 

applied. More explicitly, the combination of sensor spatial resolution, the minimal mapping 

unit size and the thematic “dominance” rule translated to a binary map produces a large 

underestimation of built-up areas in specific settlement patterns. In particular, areas 

displaying scattered settlements and/or complex mixture of rural-urban uses are expected to 

be excluded or largely underrepresented in the MODIS “Urban” layer (see Figs. 1 and 2). 
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Figure 1 : City of Dhaka, Bangladesh. In white transparency the “urban” areas as reported by the processing of 
MODIS satellite data (500-m-resolution) (Schneider, Friedl, and Potere, 2009), while the colored dots are built-up 
structures as detected using high-resolution input imagery (2.5-m-resolution) (Pesaresi et al. 2013). Note the 
large amount of information related to built-up areas not reported in the low-resolution dichotomy declared in the 
“urban” layer. 

 

Figure 2 : North of Dhaka, Bangladesh. Detail of the typical settlement pattern not reported in the low-resolution 
dichotomy declared in the MODIS “urban” layer, despite the fact that a clear dominance of human presence on 
the ground can be observed using high-resolution sensors. Note how the pattern is connoted by a mixture of 
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urban / rural residential, productive, and agricultural use, with rural residential structures often spatially related to 
the presence of trees. 

There is a scale gap between (coarse) sensor/model resolution and the size of the elements 

of interest composing the settlement surfaces at fine scale, such as single buildings and 

roads. This loss of information may be mitigated by relying on quantitative, continuous 

geoinformation layers.  

Population gridded datasets are semi-continuous information layers reporting the presence 

of population per regular raster cells (see Deichmann, 1996). The presence of population is 

strongly linked with the presence of buildings: consequently also global population grids can 

be potentially used as input for inferring the presence of built-up areas.  

There are two main projects that have been producing global population grids: the Gridded 

Population of the World (GPW) (Balk et al., 2006) and the LandScan Global Population 

Project (Dobson et al., 2000). LandScan represents ambient and not residential population, 

but its combination of model approach and higher spatial resolution (0.5 arc-minute vs 2.5 of 

GPWv3) favor it over GPW ‘in places where the census data are spatially coarse and not 

recent’ (NRC, 2007). However, when using LandScan 2010 population grid as input for global 

estimation of continuous built-up areas, one major difficulty must be addressed:  the built-

up/population relation embedded in the model is not made explicit and it is merged with 

other criteria (roads, slope, land cover, administrative units) with no explicit rules available. 

As corollary of the above, the built-up/population relations are not spatially invariant: 

consequently global population thresholding or rescaling techniques are not expected to 

provide consistent results.  

The solution adopted for the BUREF2010 production rely on adaptive techniques discovering 

the built-up/population relations embedded in the population grid, by using an independent 

and globally-consistent reference layer for systematic comparison. Locally-adaptive methods 

are expected to mitigate drawbacks that would be generated by direct global population 

thresholding techniques.  

Method 
The method uses machine learning techniques to understand the best population thresholds 

translating population densities to built-up densities. In the proposed methodology the 

MODIS Urban Land Cover (ULC) 500 m (C5) made by satellite data of the year circa 2001-

2002 is used as training set for classification of the LandScan 2010 Global Population 

Database (LS). Similar techniques are described in Pesaresi et al. (2013) and Gueguen 

(2014) for the purpose of finding best rescaling parameters translating remote sensing 

image-derived features to a high-level-abstraction semantic as “built-up areas”.  

Figure 3 shows the workflow applied in this approach. There are three main processing 

streams contributing to the final output: two learning and classification processes using ULC 

as training set (Buref A, B), and one process selecting the information of interest by the 

definition of prior heuristics (Buref C).  The purpose of the processes A, B is to discover 

general trends in the built-up/population relationships in order to discriminate between 

background and foreground information. A double inferential approach (A, B) starting from 

different BU/NBU hypothesis is used in order to improve robustness of the final output.  The 
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purpose of the process C is to filter the effect of undesired spatial criteria embedded in the 

LC model as for example the influence of roads in the spatial population distribution.  

 

Figure 3 : Workflow applied for the production of BUREF 

In order to prepare the ULC for its role as training set it is re-sampled at the same resolution 

of the LS population grid (30 arc-seconds, WGS84) by summing the binary ULC values falling 

in the same LS spatial unit (cell). This process ends with a reference “urban” layer (RUL) 

derived from ULC and reporting about the percentage of urban surface per LS spatial units in 

the range of [0 to 4] (see Fig. 4).  

 

Figure 4 : The MODIS "Urban" layer aggregated at ~1km resolution by sum of the binary values. Parts of 
Romania, Bulgaria, Greece and Turkey are shown. 
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This reference information is used for generating two training sets, namely “MODIS Urban 

Generic” (A) and “MODIS Urban Core” (B), formalizing two different built-up/not-built-up 

(BU/NBU) prior hypothesis. 

In particular, the A learning set is defined as A = {
BU: RUL ∈  [2,3] 
NBU: RUL ∈ [0]

 . The B learning set is 

derived from A by adding more conservative bounding conditions. More specifically, i) the 

BUB set must be 3 km away from NBUA, and ii) the NBUB set must be 10 km away from 

BUA. In this way, the option B consider as positive/negative samples of BU areas only the 

inner cores of large urban areas and the inner cores of large not urbanized areas, 

respectively.  

The {A, B} learning sets are used to estimate two bu = f(pop) functions using the following 

formula: 

BU{A,B}(x) =
(POP(x)− μPOPNBU{A,B}

(x))

(μPOPBU{A,B}
(x)− μPOPNBU{A,B}

(x))

      (1) 

bounded in the range BU{A,B}(x) ∈ [0. .1] with μPOPBU,NBU{A,B}
(x) denoting the average values 

of population in the built-up and not-built-up spatial domains of the A,B learning sets. 

The integration of the two hypothesis of built-up density BU{A,B}(x) obtained by the two 

learning sets is carried out by a continuous (grey-scale) morphological reconstruction-from-

marker algorithm (Vincent, 1993). Assuming two raster data sets (images) X and M, the 

grayscale reconstruction ρX(M)  of X from the marker M is obtained by iterating grayscale 

geodesic dilation of M “under” X until stability is reached, i.e.:  ρX(M) = | ⋁ δx
(n)

n≥1 (M). In 

the method discussed here the reconstruction of the BU{A} function is performed from the 

marker BU{B}. The operation propagates the built-up information inferred from conservative 

training set hypothesis to the connected regions of built-up inferred from more general 

hypothesis. The expected effect of the operation is an overall increase of the robustness of 

the overall built-up estimation model. The integrated layer is denoted as  BU{A∗B}(x) =

  ρBU{A}
(BU{B})  

In addition to BU{A,B}, a third process generating BU{C} selects the information of interest by 

the definition of prior heuristics. In particular, the objective of this phase is the detection of 

the information about the presence of small villages if it is available in the LS source. The 

operation consists in a high-spatial-frequency band-pass filtering of LS by morphological 

transforms formalized trough the so-called morphological connected operators or filters by 

reconstruction (Salembier and Serra, 1995). In particular, the area open (Vincent, 1992) 

transform γω
a  (f) is used for selecting small, relatively higher-value (“brighter”) connected 

components or “regions” in the LS data. In the current implementation, the following formula 

is applied: 

ε = LS −  γω=2
a (LS)         (2) 
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This is a “top-hat” filtering by connect component of size 2 pixels corresponding to approx. 2 

square kilometers in the LS raster data. The population distribution statistics are observed in 

the spatial domain defined by a neighboring of 5 kilometers around the ε > 0 set and 

compared with available RUL density knowledge. Finally, the BU{C} = f(LS ∈  ω) is estimated 

by bounding the minimal built-up density assumed for small villages by basic heuristics. 

The final BU layer is calculated as the union of the three inferential streams. More precisely 

the final BU(x) is calculated as 

BU(x) =   max (ρBU{A}
(BU{B}) ,   BU{C})       (3) 

Let be the general BU = π(LS, ULC  ) function estimating the amount of built-up from 

LandScan (LS) using MODIS “urban” (ULC) as training set as described above. The function 

π can be estimated using as input the whole global dataset or a sub-spatial domain K of it. 

In the second case, the output BU(XK) will be generated for each K sub-spatial domains 

making the function π adaptive to local conditions (Equation 4). 

BU(XK) =  ∏ {BU = π(LSk , ULCk  )|k ∈ K = |1. . n|}n
k=1     (4) 

In the specific implementation discussed here, a local kernel of K = 500 x 500 pixels (~500 x 

500 kilometers) was used for estimation of the π function. In order to improve smooth 

transitions between π functions estimated from adjacent kernels and prevent “blocking” 

effects in the final output, an overlapping factor of 50% (250 pixels) in all four directions of 

adjacent kernels was applied. 

Results 
The developed approach outputs a global raster layer representing both the spatial 

distribution and density of built-up areas, for the year 2010. The information about the 

presence of built-up is expressed as the percentage of built-up area respect to the total 

surface of the cell. Values are expressed in the range [0 to 100]. The layer is made available 

as a grid having a spatial resolution of 30-arc seconds (approximately 1 km at the equator), 

in the WGS84 coordinate system. Being available as a quantitative, continuous raster dataset 

significantly increases its value by facilitating integration with other spatial datasets for 

analysis or modeling (Freire, 2010).  

Figures 4-6 illustrate differences between input layers and the BUREF2010 output, for an 

area including part of Romania, Bulgaria, Greece and Turkey. Figure 5 clearly shows how 

patterns change with administrative borders (i.e., national) due to changes in data 

availability and consequent modeling adjustments. Figure 6 shows how BUREF2010 

successfully mitigates this bias, and puts in evidence the greater number of settlements 

represented compared to the MODIS urban layer, aggregated at the same 30 arc-second 

resolution (Fig. 5). Moreover, the spatial patterns of the settlements as extracted from 

BUREF seem more similar to the results of high-resolution built-up areas detection (as in 

Figure 7 - see Ferri et al., 2014) than any simple thresholding of the LandScan values.  
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Figure 5 : An example of the LandScan 2010 source: it is clearly visible the different population pattern originated 
by different spatial criteria (roads) utilized in Bulgaria vs. Turkey. 

 

Figure 6 : The output of the proposed BUREF2010 model. Note how the bias introduced by roads in Bulgaria vs. 
Turkey has been reduced. Note also the greater number of settlements in BUREF reported respect to the MODIS 
“urban” layer. 



10 

 

The BUREF dataset is a generic representation of the amount of built-up, enabling its use in 

any analyses or modeling applications where the spatial distribution of this variable may be 

considered relevant. In the specific context of disaster risk and crisis management, this 

information can be useful at any stage of the disaster management cycle. In particular, it 

can be used to improve the spatial assessment of potential or effective exposure to hazards 

and thus contributing to advancing global risk and impact analyses. 

Despite the benefits of BUREF2010, enhanced geoinformation is required to capture built-up 

areas in more detail, in order to characterize the full range and densities of human 

settlements. Figure 7 illustrates, for the same geographic area, the result of current efforts 

at built-up detection using high resolution (2.5 m) satellite imagery, aggregated at the same 

resolution as previous maps (Ferri et al., 2014). The map shows the improvements in the 

detection of built-up areas and representation of their densities.  

 

Figure 7 : The built-up areas as detected using high-resolution (2.5m) input imagery. 

Conclusions 
Mapping and assessing global built-up areas is relevant for many applications, spanning the 

domains of research, decision and policy-making. While several maps showing global urban 

extent are available, there are gaps in the representation and reporting of many built up 

areas. In particular, there is still omission of smaller settlements and scattered or low density 

built-up areas are not adequately represented. 

With the purpose of supporting the extraction of primary information from satellite imagery, 

we have developed an approach that is both innovative and effective at mapping the 

distribution and density of built-up areas. The method combines satellite-derived land cover 

information and a population density grid through machine learning techniques in order to 
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infer the percentage of land occupied by buildings. The first output is a spatial raster dataset 

with 30-arc second resolution, known as Global Built-up Reference Layer (BUREF2010). 

Results indicate that the BUREF layer improves the representation of global built-up areas 

compared to existing maps, while being suitable to integrate with other spatial datasets for 

analysis or modeling.  

Still, superior geoinformation on built-up is required, and we are currently using high 

resolution satellite imagery in order to better characterize the full size range and densities of 

human settlements. 
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